Hybrid organic-inorganic semiconductor polariton condensates and transistors

有机-无机杂化半导体极化子凝聚物和晶体管

基本信息

项目摘要

Interaction of light with matter in semiconductors is central to our technology-driven world. When a semiconductor emits or absorbs light, a discrete event of energy exchange between a photon and an electron occurs. Instead of such discrete ‘jumps’ however, it is now possible to create optical and electronic systems in which photons and excited-state electrons are mixed together in an optical microcavity and energy is exchanged between them coherently, forming entirely new particles called ‘polaritons’. When a sufficient number of polaritons is generated in a cavity, they form a coherent state called a polariton condensate. Such condensates are a form of ‘liquid light’ and display quantum properties, even though the condensate can be quite large (tens of microns in diameter). These exotic objects are not simply an academic curiosity: they can be used as the basis for an entirely new type of electronics, called ‘polaritonics’. The ease of creating polariton condensates through optical pumping has recently led to demonstrations of numerous prototype polaritonic devices including low threshold lasers, interferometers, and transistors. The latter are almost entirely based on III-V semiconductors that offer superior material quality, despite being mainly restricted to low-temperature operation due to small exciton binding energies in such materials. Organic microcavities, owing to their very robust excitons, are much more resilient and are shown to support room-temperature polariton condensates, whilst suffering from the lack of efficient electrical injection. The state-of-the-art in both the fields of organic and inorganic polaritonics has now reached the maturity, wherein hybridization of the two classes of semiconductor materials in optical microcavities promises a whole gamut of new physics and potential devices.In the pioneering work by Agranovich et al., it was shown that hybrid organic-inorganic structures mixing two degenerate excitonic species – namely, Frenkel excitons and Wannier-Mott excitons – can combine many desirable properties, such as large exciton Bohr radii favoring polariton-polariton interaction and large oscillator strengths allowing operation at room temperature and deliver giant optical non-linearities. In the proposed project, we will explore the new fundamental physics of polaritons in hybrid microcavities containing both inorganic and organic semiconductors and aim at developing an entirely new generation of hybrid polaritonic systems that harness the benefits of hybridization. To address the challenges of this research, we propose an exceptionally strong academic partnership in the field of polaritonics between Germany and the Russian Federation. The consortium brings together the critical mass, complementary expertise, and unmatched experimental facilities necessary to ignite the new field of hybrid polaritonics and deliver ground-breaking results in the rapidly developing areas of quantum and photonic engineering.
光与半导体中物质的相互作用是我们技术驱动的世界的核心。当半导体发射或吸收光时,光子和电子之间发生能量交换的离散事件。然而,取代这种离散的“跳跃”,现在有可能创建光学和电子系统,其中光子和激发态电子在光学微腔中混合在一起,能量在它们之间进行相干交换,形成称为“极化激元”的全新粒子。当腔中产生足够数量的极化激元时,它们形成称为极化激元凝聚的相干态。这种凝聚物是“液体光”的一种形式,并显示量子特性,尽管凝聚物可能相当大(直径数十微米)。这些奇异的物体不仅仅是学术上的好奇心:它们可以作为一种全新的电子学的基础,称为“极化子”。通过光泵浦产生极化激元凝聚的容易性最近导致了许多原型极化激元器件的演示,包括低阈值激光器,干涉仪和晶体管。后者几乎完全基于提供上级材料质量的III-V族半导体,尽管由于这种材料中的小激子结合能而主要限于低温操作。有机微腔,由于其非常强大的激子,更有弹性,并显示支持室温极化激元凝聚,同时缺乏有效的电注入的痛苦。有机和无机极化激元学领域的最新技术现已达到成熟,其中两类半导体材料在光学微腔中的杂化有望产生全新的物理和潜在的器件。已经表明,混合两种简并激子物质(即,Frenkel激子和Wannier-Mott激子)的混合有机-无机结构可以联合收割机结合许多期望的性质,例如有利于极化子-极化子相互作用的大激子玻尔半径和允许在室温下操作并提供巨大光学非线性的大振子强度。在拟议的项目中,我们将探索包含无机和有机半导体的混合微腔中极化激元的新基础物理,并旨在开发全新一代的混合极化激元系统,利用杂交的好处。为了应对这项研究的挑战,我们建议在德国和俄罗斯联邦之间的极化激振学领域建立非常强大的学术伙伴关系。该联盟汇集了临界质量,互补的专业知识和无与伦比的实验设施,以点燃混合极化子的新领域,并在量子和光子工程的快速发展领域提供突破性的成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Sven Höfling其他文献

Professor Dr. Sven Höfling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Sven Höfling', 18)}}的其他基金

Generation of complex multi-photon states in miniaturized semiconductor based quantum devices
在基于微型半导体的量子器件中生成复杂的多光子态
  • 批准号:
    403555215
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Collective quantum transport and light-assisted superconductivity
集体量子输运和光辅助超导
  • 批准号:
    449424711
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Construction and manipulation of topological insulators from III-V heterostructures
III-V 异质结构拓扑绝缘体的构建和操作
  • 批准号:
    530143959
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

低纬度边缘海颗粒有机碳的卫星遥感算法研究
  • 批准号:
    41076114
  • 批准年份:
    2010
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目
基于活性炭孔径调控和表面修饰改性的水中低浓度有机污染物优化去除适配机制
  • 批准号:
    50878204
  • 批准年份:
    2008
  • 资助金额:
    37.0 万元
  • 项目类别:
    面上项目
TB方法在有机和生物大分子体系计算研究中的应用
  • 批准号:
    20773047
  • 批准年份:
    2007
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Liquid Crystal-Templated Sequential Infiltration Synthesis of Hybrid Organic/Inorganic Materials with Multidimensional Chiral Structures
职业:具有多维手性结构的有机/无机杂化材料的液晶模板连续渗透合成
  • 批准号:
    2337740
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Unravelling the Abnormal Thermo-Mechanical Behavior of 2D Hybrid Organic-Inorganic Perovskites
揭示二维杂化有机-无机钙钛矿的异常热机械行为
  • 批准号:
    2311573
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Synthesis and catalytic application of organic-inorganic hybrid metallosilicate nanosheets
有机-无机杂化金属硅酸盐纳米片的合成及催化应用
  • 批准号:
    23H01764
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Synthesis and Characterization of Novel Organic-Inorganic Hybrid Perovskites Focusing on Pseudohalide Anion
以赝卤化物阴离子为中心的新型有机-无机杂化钙钛矿的合成与表征
  • 批准号:
    22KJ1328
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of novel liquid scintillators using organic-inorganic hybrid materials
使用有机-无机杂化材料开发新型液体闪烁体
  • 批准号:
    22KJ0291
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
  • 批准号:
    2323547
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
  • 批准号:
    2323548
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
  • 批准号:
    2323546
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Inorganic Quantum Dot-Organic Hybrid Materials for Renewable Energy Technologies
用于可再生能源技术的无机量子点-有机杂化材料
  • 批准号:
    2885895
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
CAREER: Modulating Optoelectronic Properties and Functionality of Hybrid Organic-Inorganic Semiconductors by Controlling Lattice Strain with Molecular Interactions at Surfaces
职业:通过表面分子相互作用控制晶格应变来调节有机-无机杂化半导体的光电特性和功能
  • 批准号:
    2237211
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了