Finsler Metrics and Closed Geodesics
芬斯勒度量和闭合测地线
基本信息
- 批准号:43004590
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2007
- 资助国家:德国
- 起止时间:2006-12-31 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
On one hand the connection between curvature properties of Finsler metrics and the length of the shortest closed geodesic resp. the injectivity radius and on the other hand existence results for closed geodesics on compact manifolds carrying a Finsler metric will be considered. In more detail the following problems will be investigated:1. Does equality in the length estimate given by the applicant for the shortest closed geodesic of a non-reversible Finsler metric of positive flag curvature imply that the flag curvature is constant?2. Is is possible to improve the lower bound in the estimate presented by the applicant for the injectivity radius of a compact and simply-connected Riemannian manifold with positive flag curvature? Is there a lower bound which does not depend on the reversibility?3. The existence of two closed geodesics on a compact rank one symmetric space witha bumpy non-reversible Finsler metric.
一方面讨论了Finsler度量的曲率性质与最短闭测地线的长度之间的关系;内射性半径和另一方面,存在性结果的封闭测地线的紧流形携带Finsler度量将被考虑。在更详细的以下问题将被调查:1。申请人对正旗曲率的不可逆芬斯勒度量的最短闭测地线给出的长度估计的相等性是否意味着旗曲率是常数?2.有可能改进申请人提出的具有正旗曲率的紧致和单连通黎曼流形的内射性半径的估计的下界吗?是否存在一个不依赖于可逆性的下限?3.在紧致秩一对称空间上,具有凹凸不可逆Finsler度量的两条闭测地线的存在性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Hans-Bert Rademacher其他文献
Professor Dr. Hans-Bert Rademacher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Hans-Bert Rademacher', 18)}}的其他基金
Conformal Geometry of semi-Riemannian Manifolds
半黎曼流形的共形几何
- 批准号:
5453380 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
New metrics to measure and track fauna community condition in Australia
衡量和跟踪澳大利亚动物群落状况的新指标
- 批准号:
LP230100179 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Linkage Projects
Research on various canonical Kaehler metrics by means of energy functionals and non-Archimedean metrics
利用能量泛函和非阿基米德度量研究各种典型凯勒度量
- 批准号:
23K03120 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
- 批准号:
2303508 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Metrics for Brain Controlled Communication: A comprehensive review of clinical outcome assessments for communication brain computer interfaces in amyotrophic lateral sclerosis
脑控制通信指标:肌萎缩侧索硬化症通信脑机接口临床结果评估的全面综述
- 批准号:
10848139 - 财政年份:2023
- 资助金额:
-- - 项目类别:
IMR: MM-1C: Methods and Metrics for IPv6 Internet Scanning
IMR:MM-1C:IPv6 互联网扫描的方法和指标
- 批准号:
2319315 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Assessing Diffusion MRI Metrics for Detecting Changes of Synaptic Density in Alzheimer's Disease
评估弥散 MRI 指标以检测阿尔茨海默病突触密度的变化
- 批准号:
10739911 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Geometry of Wasserstein and Transportation Cost Metrics
Wasserstein 的几何形状和运输成本指标
- 批准号:
2342644 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Geometry of Wasserstein and Transportation Cost Metrics
Wasserstein 的几何形状和运输成本指标
- 批准号:
2247582 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
A Smart Simulator for Metrics-based Cannulation Skills Training for Hemodialysis
用于基于指标的血液透析插管技能培训的智能模拟器
- 批准号:
10830667 - 财政年份:2023
- 资助金额:
-- - 项目类别: