Basic of Numerical Analysis for a Variety of Fluids under Complex Conditions and its Application to Engineering Problems

复杂条件下多种流体数值分析基础及其在工程问题中的应用

基本信息

  • 批准号:
    05650060
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1993
  • 资助国家:
    日本
  • 起止时间:
    1993 至 1995
  • 项目状态:
    已结题

项目摘要

This reasearch has developed a numerical method called "deformable-cell method" for fluids under complex conditions, and applied it to engineering problems. Complex conditions mean the domain of analysis not reactangular, moving boundaries with complex boundary conditions, and special external forces. The method is based on integral-type laws of conservation in cells which is deformable in accordance with moving boundaries, and various boundary conditions are treated in a unified manner there. The themes specified in this research are :1. Free surface and density interface waves : Vertical analysis on free surface and desity interface waves in a two-layred fluid on a slope was performed. In connection with this problem, "open boundary condition" and "tiny cell" were investigated.2. Interacting bodies and fluid : Problems on flows in vivo/in vitro or floating bodies was supposed, but they are the themes in the near future together with "nonmagnetic body driven by magnetic field in magne … More tic fluid" related with the next item.3. Fluid under special external force : "Waves in magnetic fluid" have been investigated both theoretically and numerically. The following are the results of theretical analysis : (1) Stability of the resonant waves on the free surface or on the density interface by alternating magnetic fields can be investigated by the Mathieu equation or its extension ; (2) The method of conformal mapping describes well the strongly-nonlinear multivalued free surface shapes under strong magnetic field. They will give guides for numerical and experimental researches. In numerical analysis, resnant waves caused by alternating magnetic fields were analyzed by the deformable-cell method successfully with only a small change of its framework. The fluid under smal gravity is the theme in the future.4. Basis on computational fluid dynamics : A "system for three-dimensional analysis of fluids for wide uses" has been newly constructed. This system supoprts extensively creating computer codes with a large original part, and diminished the loads of programming and managing data by : (1) The loop procedures can be used commonly in all parts of the code ; (2) Global numbers can be acquired in a unified manner at any part of the code. This system is considered as the basis for stocking positively and systematically the knowhow on stable and accurate methods and diagnoses. Less
本文发展了一种复杂条件下流体的数值计算方法--“变形胞元法”,并将其应用于工程问题。复杂条件意味着分析域不是反作用的,具有复杂边界条件的移动边界,以及特殊的外力。该方法是基于积分型守恒定律的细胞是根据移动边界变形,和各种边界条件处理在一个统一的方式。本研究的主题是:1。自由表面波和密度界面波:对斜坡上两层流体中的自由表面波和密度界面波进行了垂向分析。针对这一问题,研究了“开边界条件”和“微元胞”.相互作用的物体和流体:在体内/体外或浮体中的流动问题被认为是可能的,但它们与“磁流体中的磁场驱动的浮体”一起是近期的主题。 ...更多信息 与下一项相关的“抽动液”。本文对特殊外力作用下的流体:“磁流体中的波”进行了理论和数值研究。理论分析的结果如下:(1)交变磁场作用下自由面或密度界面上共振波的稳定性可以用Mathieu方程或其推广来研究;(2)保角映射方法很好地描述了强磁场作用下强非线性多值自由面的形状。它们将为数值和实验研究提供指导。在数值分析中,仅对变形胞元法的框架作了很小的改动,就成功地分析了交变磁场引起的共振波。小重力下的流体是未来的研究主题.以计算流体力学为基础:新构建了“广泛应用的三维流体分析系统”。该系统支持大规模地生成原始代码,减少了编程和管理数据的工作量:(1)代码的所有部分都可以通用循环过程;(2)代码的任何部分都可以统一获取全局数。该系统被认为是积极和系统地储存稳定和准确的方法和诊断知识的基础。少

项目成果

期刊论文数量(59)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
水田洋(登坂宣好・矢川元基編): "変形可能セル法による磁性流体非を表面波動の解析(計算力学[IV]-移動・自由境界問題の近似解析-)" 養賢堂,東京, 25 (266) (1995)
Hiroshi Mizuta(由 Nobuyoshi Tosaka 和 Motoki Yakawa 编辑):“使用变形单元法分析磁流体中的表面波(计算力学 [IV] - 移动和自由边界问题的近似分析 -)” Yokendo,东京,25 (266) )(1995)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Mizuta: "Numerical Analysis of Magnetic Fluid with Interface by a Deformable-Cell Method" Proc. of 5th International Symposium on Computational Fluid Dynamics-Sendai, Japan, 1993. II. 267-272 (1993)
Y.Mizuta:“通过可变形细胞方法对具有界面的磁流体进行数值分析”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Mizuta: "Open Boundary Condition for Vertical Analysis of Incompressible Fluids with Surface and Interface" Computational Fluid Dynamics JOURNAL. 3 (3). 257-272 (1994)
Y.Mizuta:“具有表面和界面的不可压缩流体垂直分析的开放边界条件”计算流体动力学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Mizuta: "A Practical Scheme for Two-Layred Fluid on a Slope with Tiny Cell and Open Boundary" Proc. of 6th International Symposium on Computational Fluid Dynamics-Lake Tahoe, USA,1995. IV. 80-85 (1995)
Y.Mizuta:“微小单元和开放边界斜坡上两层流体的实用方案”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y. Mizuta: "Open Boundary Condition for Vertical Analysis of Incompressible Fluids with Surface and Interface" Computational Fluid Dynamics JOUNAL. 3. 257-272 (1994)
Y. Mizuta:“具有表面和界面的不可压缩流体垂直分析的开放边界条件”计算流体动力学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIZUTA Yo其他文献

MIZUTA Yo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Boundary condition controls on the timing and extent of Pleistocene glaciations in Yukon
边界条件对育空地区更新世冰川作用时间和范围的控制
  • 批准号:
    RGPIN-2018-06887
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Discovery Grants Program - Individual
Synchronization control of hyperbolic equations with van der Pol boundary condition and its application to secure communication systems
范德波尔边界条件双曲方程同步控制及其在安全通信系统中的应用
  • 批准号:
    21K03370
  • 财政年份:
    2021
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Boundary condition controls on the timing and extent of Pleistocene glaciations in Yukon
边界条件对育空地区更新世冰川作用时间和范围的控制
  • 批准号:
    RGPIN-2018-06887
  • 财政年份:
    2021
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Discovery Grants Program - Individual
Boundary condition controls on the timing and extent of Pleistocene glaciations in Yukon
边界条件对育空地区更新世冰川作用时间和范围的控制
  • 批准号:
    RGPIN-2018-06887
  • 财政年份:
    2020
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical studies on optical activities of helical polymers based on localized orbitals under the periodic boundary condition
周期性边界条件下基于局域轨道的螺旋聚合物旋光性理论研究
  • 批准号:
    19K05392
  • 财政年份:
    2019
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Application of variable boundary condition in waveguide quantum electrodynamics
变边界条件在波导量子电动力学中的应用
  • 批准号:
    19K03684
  • 财政年份:
    2019
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Boundary condition controls on the timing and extent of Pleistocene glaciations in Yukon
边界条件对育空地区更新世冰川作用时间和范围的控制
  • 批准号:
    RGPIN-2018-06887
  • 财政年份:
    2019
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Discovery Grants Program - Individual
Boundary condition controls on the timing and extent of Pleistocene glaciations in Yukon
边界条件对育空地区更新世冰川作用时间和范围的控制
  • 批准号:
    RGPIN-2018-06887
  • 财政年份:
    2018
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Discovery Grants Program - Individual
Re-definition of Navier boundary condition: development of the hydrodynamic boundary condition on the solid surface
纳维边界条件的重新定义:固体表面流体动力边界条件的发展
  • 批准号:
    18K03929
  • 财政年份:
    2018
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fluid-elastic structure interaction with the Navier slip boundary condition
流弹性结构与纳维滑移边界条件的相互作用
  • 批准号:
    1613757
  • 财政年份:
    2016
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了