Foundations, Applications & Theory of Inductive Logic

基础、应用

基本信息

项目摘要

While our ancestors did not escape the saber-tooths by thrashing them at roulette, our ability to reason under uncertainty is clearly one of the causes of the continued dominance of the human species on earth. Inductive logic, the topic of this proposed project, aims to describe, predict, understand, automate and improve our faculties for uncertain inference. Today, uncertain inference permeates our daily lives, politics, (business) decision making, the natural sciences (including probability theory and statistics).Modern-era inductive logic was funded and popularised by Rudolf Carnap. Despitethe impressive progress made by Carnap and his co-workers, the research programme of inductive logic never gained traction in philosophy, logic, mathematics nor in computer science. This is undoubtedly, at least partially, due to a number of influential criticisms levelled at inductive logic by Lakatos, Norton, Popper, Seidenfeld. Nelson Goodman’s grue paradox, in particular, threatened to sink Carnap’s approach at an early stage. Carnap’s replies notwithstanding, inductive logicians have been facing an uphill battle from that point on.Inductive logicians today take Goodman to point out that, first, violations of the Principle of Total Evidence (as already formulated by Carnap) will bring about counter-intuitive results; and second, that inductive inference depends on the underlying language. Rather than being threatened by this, we take this to be an opportunity for exciting research aiming at formalising ever larger parts of the available evidence and investigating the (in-)dependence of inductive inference with respect to the underlying formal framework.Today, small but dedicated groups of philosophers, computer scientists and mathematicians are once again flying the inductive logic flag. Unfortunately, there is little close interaction between groups, which is a major obstacle in realising the prospects of inductive logic. Furthermore, inductive logic does not receive the appreciation by the wider communities it, in our views, deserves – possibly due to the lack of perceived cohesion among inductive logicians. This network proposal hence aims to1. support and coordinate inductive logicians and2. draw attention to new exciting work on inductive logic.
虽然我们的祖先并没有通过轮盘赌来摆脱剑齿虎,但我们在不确定情况下的推理能力显然是人类在地球上持续占据主导地位的原因之一。归纳逻辑是这个拟议项目的主题,旨在描述、预测、理解、自动化和提高我们不确定推理的能力。今天,不确定推理渗透到我们的日常生活、政治、(商业)决策、自然科学(包括概率论和统计学)中。现代归纳逻辑是由鲁道夫·卡尔纳普资助和推广的。尽管卡尔纳普和他的同事取得了令人印象深刻的进展,但归纳逻辑的研究项目从未在哲学、逻辑、数学和计算机科学领域获得关注。毫无疑问,至少部分是由于拉卡托斯、诺顿、波普尔、塞登菲尔德对归纳逻辑提出的一些有影响力的批评。尤其是纳尔逊·古德曼的可怕悖论,有可能在早期阶段使卡纳普的方法失败。尽管有卡尔纳普的答复,归纳逻辑学家从那时起就面临着一场艰苦的战斗。今天,归纳逻辑学家接受古德曼指出,首先,违反总体证据原则(正如卡尔纳普已经阐述的那样)将带来反直觉的结果;其次,归纳推理取决于底层语言。我们并没有受到这种威胁,而是将其视为一个激动人心的研究机会,旨在将现有证据的更大部分形式化,并调查归纳推理相对于底层形式框架的(非)依赖性。今天,由哲学家、计算机科学家和数学家组成的小而专注的团体再次飘扬归纳逻辑的旗帜。不幸的是,群体之间很少有密切的互动,这是实现归纳逻辑前景的主要障碍。此外,在我们看来,归纳逻辑并没有得到它应有的更广泛社区的赞赏——可能是由于归纳逻辑学家之间缺乏可感知的凝聚力。因此,该网络提案旨在1。支持和协调归纳逻辑学家和2。引起人们对归纳逻辑方面令人兴奋的新工作的关注。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Jürgen Landes其他文献

Dr. Jürgen Landes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Jürgen Landes', 18)}}的其他基金

Evidence and Objective Bayesian Epistemology
证据和客观贝叶斯认识论
  • 批准号:
    405961989
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Foundations and applications of geometric graph theory
几何图论基础与应用
  • 批准号:
    RGPIN-2016-04936
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Strategic foundations of cooperative game theory from the view of anti-duality, and their applications to labor market matching
反二元性视角下合作博弈论的战略基础及其在劳动力市场匹配中的应用
  • 批准号:
    20K01552
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Foundations and applications of geometric graph theory
几何图论基础与应用
  • 批准号:
    RGPIN-2016-04936
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Foundations and applications of geometric graph theory
几何图论基础与应用
  • 批准号:
    RGPIN-2016-04936
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Foundations and applications of geometric graph theory
几何图论基础与应用
  • 批准号:
    RGPIN-2016-04936
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Foundations and applications of geometric graph theory
几何图论基础与应用
  • 批准号:
    RGPIN-2016-04936
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Foundations and applications of geometric graph theory
几何图论基础与应用
  • 批准号:
    RGPIN-2016-04936
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
New frameworks in metric Number Theory: foundations and applications
度量数论的新框架:基础和应用
  • 批准号:
    EP/J018260/1
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grant
SHF: Small: Foundations and Applications of Higher-Dimensional Directed Type Theory
SHF:小:高维定向类型理论的基础和应用
  • 批准号:
    1116703
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Foundations of Bayesian Theory: Extensions and Applications
贝叶斯理论的基础:扩展和应用
  • 批准号:
    0314249
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了