Higher order numerical methods for acoustic scattering problems with locally perturbed periodic structures

具有局部扰动周期性结构的声散射问题的高阶数值方法

基本信息

项目摘要

This project is devoted to the investigation of time-harmonic acoustic scattering problems with locally perturbed periodic inhomogeneous layers above impenetrable plates in three dimensional spaces. The scattering problems are modelled by Helmholtz equations in unbounded domains, both the theoretical analysis and the numerical solution of which are very challenging. The main tool involved in this project is the Floquet-Bloch transform, which has been proven to be very powerful for scattering problems with periodic structures in two dimensional spaces. The first objective is to analyze continuity and regularity of the Bloch transformed field with respect to the quasi-periodicity parameter, where the Dirichlet-to-Neumann map plays an important role. The second goal is to propose a high order numerical method for scattering problems with periodic layers, based on the regularity results established for the quasi-periodic Bloch transformed problems. In contrast to the 2D case, the singularities of the Bloch transformed fields are no longer localized in a finite number of points, but cover a union of "singular circles". Thus a straightforward extension of the high order numerical method for the 2D case may not be appropriate for the 3D case, and new ideas will be required. The third goal is to develop an efficient numerical method for locally perturbed periodic layers. Either a coupled finite element method or a discretization of the Lippmann-Schwinger equation will be applied.
本计画主要研究三维空间中不可穿透平板上局部扰动周期性不均匀层的时谐声散射问题。电磁散射问题一般用无界区域上的亥姆霍兹方程来描述,无论是理论分析还是数值求解都具有很大的挑战性。 该项目涉及的主要工具是Floquet-Bloch变换,已被证明对于二维空间中具有周期性结构的散射问题非常强大。第一个目标是分析Bloch变换场关于准周期参数的连续性和正则性,其中Dirichlet-to-Neumann映射起着重要的作用。第二个目标是提出一个高阶数值方法的散射问题的周期层,准周期Bloch变换问题的正则性结果建立的基础上。与二维情形相反,布洛赫变换场的奇点不再局限于有限个点,而是覆盖了一个“奇异圆”的并集。因此,一个简单的扩展的高阶数值方法的二维情况下可能不适合的三维情况下,新的想法将是必要的。第三个目标是发展一种有效的数值方法,局部扰动周期层。将应用耦合有限元法或Lippmann-Schwinger方程的离散化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Ruming Zhang其他文献

Professorin Dr. Ruming Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于Order的SIS/LWE变体问题及其应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
体内亚核小体图谱的绘制及其调控机制研究
  • 批准号:
    32000423
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
CTCF/cohesin介导的染色质高级结构调控DNA双链断裂修复的分子机制研究
  • 批准号:
    32000425
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
异染色质修饰通过调控三维基因组区室化影响机体应激反应的分子机制
  • 批准号:
    31970585
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
骨髓间充质干细胞成骨成脂分化过程中染色质三维构象改变与转录调控分子机制研究
  • 批准号:
    31960136
  • 批准年份:
    2019
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
染色质三维结构等位效应的亲代传递研究
  • 批准号:
    31970586
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
染色质三维构象新型调控因子的机制研究
  • 批准号:
    31900431
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
转座因子调控多能干细胞染色质三维结构中的作用
  • 批准号:
    31970589
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Poisson Order, Morita 理论,群作用及相关课题
  • 批准号:
    19ZR1434600
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Kummer扩张的代数几何码的若干问题研究
  • 批准号:
    11701317
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
  • 批准号:
    RGPIN-2015-05606
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Numerical study of the bulk-edge correspondence in strongly correlated higher-order topological insulators
强相关高阶拓扑绝缘体体边对应的数值研究
  • 批准号:
    21K03395
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
  • 批准号:
    RGPIN-2015-05606
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Study on Higher Order Numerical Methods and Dynamical Behavior of Solutions for Mathematical Models
数学模型解的高阶数值方法和动力学行为研究
  • 批准号:
    19K03613
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
  • 批准号:
    RGPIN-2015-05606
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Fully numerical method for divergent multi-loop Feynman integrals appearing in higher order radiative corrections
高阶辐射校正中发散多环费曼积分的全数值方法
  • 批准号:
    17K05428
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
  • 批准号:
    478018-2015
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
  • 批准号:
    RGPIN-2015-05606
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
An Efficient Numerical Method for Higher Order Springing Induced Loads
高阶弹振诱发载荷的有效数值方法
  • 批准号:
    311018823
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Numerical algorithms for higher-order accurate discretizations of flows on deforming domains
变形域上流动高阶精确离散的数值算法
  • 批准号:
    RGPIN-2015-05606
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了