Provenance Analysis for Logic and Games

逻辑和游戏的起源分析

基本信息

项目摘要

Provenance analysis and semiring semantics are based on the idea to evaluate logical statements not just by true or false, but by values in some commutative semiring. In this context, the classical semantics re-appears as the special case, when the Boolean semiring is used. Other semirings provide additional information, for instance for cost computations, for the counting of evaluation strategies and proofs, for access levels and security issues, and so on. Further, provenance semirings of polynomials or formal power theories, with universal properties in an algebraic sense, are used to find most general provenance valuations. In particular, they admit the tracking of atomic facts, and give precise insights which combinations of atomic facts yield the truth of a logical statement, and how often these are used in a successful evaluation. For positive database query languages, semiring provenance has been successfully applied for more than 15 years. The objective of this research project is the systematic extension of provenance analysis and semiring semantics to a broad spectrum of logical formalisms which are relevant in various areas of computer science, and as well to classes of finite and infinite games. This also opens the door to new applications of provenance analysis. Important starting points of this project have been our new approach for the treatment of negation in polynomial semirings with dual indeterminate, and the connections of provenance analysis to the theory of finite and infinite games. Tn the first phase of this project, significant progress towards these objectives has been made. Algebraic, logical, and game-theoretic foundations of semiring semantics are now much better understood. Suitable semirings for fixed-point computations have been identified, and an adequate semiring semantics for general fixed-point logics with negation and interleaving of least and greatest fixed points has been found, including algorithmic evaluation strategies and associated model-checking games. Important model-theoretic questions of semiring semantics could be answered. Provenance analysis has also been established as a new method for the strategy analysis in games. Sum-of-Strategies-Theorems have been proved for a number of different game models, and the significance and value of this method has been illustrated by a detailed case analysis for Büchi games. In the second phase of this project, we want to extend and deepen our results in several directions, and close remaining gaps in the theory. This includes logical, algorithmic, and game-theoretic aspects, as well as applications, for instance for repairs of missing or inaccurate data, and logical learning theory. Our goal is to make provenance analysis and semiring semantics a mature field of logic in computer science.
起源分析和半环语义学基于这样的思想,即不仅通过真或假,而且通过某些交换半环中的值来评估逻辑语句。在这种情况下,经典的语义重新出现的特殊情况下,当使用布尔半环。其他半环提供额外的信息,例如成本计算,计算的评估策略和证明,访问级别和安全性issues.Further,起源半环的多项式或正式的权力理论,在代数意义上的通用属性,被用来找到最一般的起源估值。特别是,他们承认原子事实的跟踪,并给出精确的见解,原子事实的组合产生逻辑陈述的真理,以及这些在成功的评估中使用的频率。对于正数据库查询语言,半环起源已经成功地应用了15年以上。这个研究项目的目标是系统的扩展起源分析和半环语义的广泛的逻辑形式主义,这是相关的计算机科学的各个领域,以及类有限和无限的游戏。这也为来源分析的新应用打开了大门。这个项目的重要出发点一直是我们的新方法处理否定的多项式半环与对偶不定,和连接的起源分析理论的有限和无限的游戏。在该项目的第一阶段,在实现这些目标方面取得了重大进展。半环语义的代数学、逻辑学和博弈论基础现在得到了更好的理解。合适的半环不动点计算已被确定,和一个足够的半环语义一般不动点逻辑的否定和交织的最小和最大的不动点已被发现,包括算法评估策略和相关的模型检查游戏。半环语义的重要模型论问题可以得到回答。起源分析也被确立为博弈策略分析的一种新方法。本文证明了博弈论的求和定理,并通过对Büchi博弈的详细案例分析,说明了该方法的意义和价值。在这个项目的第二阶段,我们希望在几个方向上扩展和深化我们的结果,并填补理论中剩余的空白。这包括逻辑,算法和博弈论方面,以及应用程序,例如用于修复丢失或不准确的数据,以及逻辑学习理论。我们的目标是使起源分析和半环语义成为计算机科学中一个成熟的逻辑领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Erich Grädel其他文献

Professor Dr. Erich Grädel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Erich Grädel', 18)}}的其他基金

Logic, Symmetry, and Complexity
逻辑、对称性和复杂性
  • 批准号:
    405342984
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Dependence and Independence, Quantitative Aspects and Counting Constructs in Logic and Games
逻辑和游戏中的依赖性和独立性、定量方面和计数结构
  • 批准号:
    270058382
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Automatic Structures
自动结构
  • 批准号:
    230228719
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Partielle Information in Logik und Spielen
逻辑和游戏中的部分信息
  • 批准号:
    211982289
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fixed point logics: expressive power, structure, complexity
定点逻辑:表达能力、结构、复杂性
  • 批准号:
    199814663
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Logic for Interaction (LINT)
交互逻辑 (LINT)
  • 批准号:
    71963687
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Algorithmische Strategien in Mehrpersonen-Spielen - Konzepte und Methoden für kooperationsfähige Systeme
多人博弈中的算法策略——合作系统的概念和方法
  • 批准号:
    40219435
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Computational Model Theory (algorithmische Modelltheorie) und ihre Anwendungen in der Informatik
计算模型理论及其在计算机科学中的应用
  • 批准号:
    5280774
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theoretische Grundlagen und Model-Checking für Abstract-State-Machines
抽象状态机的理论基础和模型检查
  • 批准号:
    5162256
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Algorithmen und Komplexität für logische Entscheidungsprobleme und deren Anwendungen in der Wissensrepräsentation
逻辑决策问题的算法和复杂性及其在知识表示中的应用
  • 批准号:
    5386744
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

2022BBSRC-NSF/BIO Generating New Network Analysis Tools for Elucidating the Functional Logic of 3D Vision Circuits of the Drosophila Brain
2022BBSRC-NSF/BIO 生成新的网络分析工具来阐明果蝇大脑 3D 视觉电路的功能逻辑
  • 批准号:
    BB/Y000234/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Learning support method adaptive to program logic based on analysis of coding history
基于编码历史分析的适应程序逻辑的学习支持方法
  • 批准号:
    22K02854
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: SHF: Medium: Synthesis of Logic Programs for Democratizing Program Analysis
合作研究:SHF:媒介:民主化程序分析的逻辑程序综合
  • 批准号:
    2107429
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Synthesis of Logic Programs for Democratizing Program Analysis
合作研究:SHF:媒介:民主化程序分析的逻辑程序综合
  • 批准号:
    2107261
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Linking the molecular logic of sensory neuron diversity and somatosensory circuitry in mouse spinal cord: development of novel tools for viral tracing and 3D analysis
将小鼠脊髓感觉神经元多样性的分子逻辑与体感回路联系起来:开发病毒追踪和 3D 分析的新工具
  • 批准号:
    10307604
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Ethical Evaluation of Information Disclosure and Shielding by Counterfactual Conditionals: Its Analysis and Proposal for it based on Modal Logic
反事实条件对信息披露与屏蔽的伦理评价:基于模态逻辑的分析与建议
  • 批准号:
    20K12784
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A GIS-based Logic Scoring of Preference Approach for Spatial Decision-Making Analysis in 3D
基于 GIS 的 3D 空间决策分析偏好逻辑评分方法
  • 批准号:
    553442-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Linking the molecular logic of sensory neuron diversity and somatosensory circuitry in mouse spinal cord: development of novel tools for viral tracing and 3D analysis
将小鼠脊髓感觉神经元多样性的分子逻辑与体感回路联系起来:开发病毒追踪和 3D 分析的新工具
  • 批准号:
    10156647
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
The Analysis of the Logic and Structure of Lesson Visualization : A Trial Theory for the Construction of Video Pedagogy
可视化教学的逻辑与结构分析:视频教学法构建的尝试理论
  • 批准号:
    20K02457
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Political Situation in Palestine and Behavioral Logic of the Non-State Actor: Analysis of Domestic and Foreign Strategy of Hamas
巴勒斯坦政局与非国家行为者行为逻辑:哈马斯国内外战略分析
  • 批准号:
    19K13642
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了