Pattern formation its multiplicative stochastic processes
模式形成及其乘法随机过程
基本信息
- 批准号:62460037
- 负责人:
- 金额:$ 3.39万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (B)
- 财政年份:1987
- 资助国家:日本
- 起止时间:1987 至 1988
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The growth process of the convective pattern in the electrohydrodynamic instability(END) of nematic liquid crystals is basically devided into three evolution regimes; 1) the early stage(amplitude dynamics), 2)the late stage(phase dynamics) and 3)the final stage (defect dynamics). The scaling properties based on the noisy Landau equation for the amplitude and for the variances are experimentally observed in the early stage but not hold in both a late and a final stages. Both the correlation time _N and the intensity Q of the noise are the crucial parameters to control the bifurcation in multiplicative stochastic processes of EHD instability. With increasing a noise intensity the threshold for the onset of the first instability changes drastically. We observe that the curvature arising for the threshold changes as one is going e.g. from the onset of the williams domains(WD) to the onset of the GP. This result reflects the transition in the flow structure from WD to GP and dynamical scatt … More ering mode (DSM:turbulence). As the intensity of noise is increased further, the onset of the first instability becomes more complex. Defect motions, pattern selections, transition to chaos and these magnetic-field effect are also studied detailedly in WD to the fluctuating WD(FWD) regimes. The defect chaos(FWD) could occur slightly above the threshold, via the state with regular rolls without any defect for finite aspect ratio. In this state, defects never disappear whose number always changes nonperiodically in time. The power spectrum of the temporal change of this number shows l/f type-spectrum. A magnetic field can suppress a defect chaos and stabilized the system. The threshold of an applied electric field for the onset of EHD shifts upward increasing in a magnetic field. The magnetic field could change the direction of a roll axis into the direction perpendicular to its field. The quantitative dynamical studies on magnetic field and multiplicative noise effects are left to be investigated in future. Less
向列相液晶电流体动力学不稳定性(END)中对流模式的生长过程基本上可分为三个演化阶段:1)早期(振幅动力学),2)晚期(相动力学)和3)末期(缺陷动力学)。基于噪声朗道方程的振幅和方差的标度性质在早期被实验观察到,但在后期和末期都不成立。关联时间N和噪声强度Q是控制EHD不稳定性乘性随机过程分叉的关键参数。随着噪声强度的增加,第一次失稳开始的阈值发生了剧烈的变化。我们观察到阈值产生的曲率随着一个人的移动而变化,例如从Williams域(WD)的开始到GP的开始。这一结果反映了从WD到GP的流动结构的转变和动态散射…更多运行模式(DSM:湍流)。随着噪声强度的进一步增加,第一次失稳的发生变得更加复杂。还详细研究了WD到波动WD(FWD)区的缺陷运动、图样选择、向混沌的转变以及这些磁场效应。在有限长宽比条件下,通过无缺陷的规则卷曲状态,缺陷混沌(FWD)可能会出现在阈值以上。在这种状态下,缺陷永远不会消失,缺陷的数量总是随时间非周期性地变化。该数随时间变化的功率谱呈L/f型谱。磁场可以抑制缺陷混沌,使系统稳定。外加电场引起EHD开始的阈值上移,在磁场中增大。磁场可以将滚动轴的方向改变为垂直于其磁场的方向。磁场和乘性噪声效应的定量动力学研究有待于进一步研究。较少
项目成果
期刊论文数量(59)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.,Yamazaki: Journal of the Physical Society of Japan. 56. 502-505 (1987)
H.,山崎:日本物理学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Kai; H.Fukunaga; H.R.Brand: "Experimental study on threshld shifts and structure changes due to external multiplicative noise in nematic liquid crystals" Journal of the Physical Society of Japan. 56. 3759-3762 (1987)
S.凯;
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
甲斐昌一: 電気学会論文誌(シナジエティクス特集). 107-c. 1011-1018 (1987)
Shoichi Kai:日本电气工程师协会杂志(协同效应特刊)107-c 1011-1018(1987)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
甲斐昌一: 電気学会論文誌 C. 107C. 1011-1018 (1987)
Shoichi Kai:日本电气工程师学会汇刊 C.107C。1011-1018 (1987)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Kai; S.Higaki; H.Yamazaki; T Yamada: "Morphogenesis in precipitation processes; Importance of Ostwald ripening" Transaction of Institute of Electrical Engineering of Japan. 107-c. 1011-1018 (1987)
S.凯;
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAI Shoichi其他文献
KAI Shoichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAI Shoichi', 18)}}的其他基金
Elucidation for Pattern Formation in Liquid Crystals -Nonequilibrium Fluctuation Theorem and Spatiotemporal Chaos-
液晶图案形成的阐明-非平衡涨落定理与时空混沌-
- 批准号:
21340110 - 财政年份:2009
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of Pattern Formation in Liquid Crystals-Soft-Mode Turbulence and Generalized Fluctuation Theorem-
液晶中图案形成的阐明-软模式湍流和广义涨落定理-
- 批准号:
17340119 - 财政年份:2005
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Pattern Formation in Liquid Crystals --Symmetry of Fields and Nonequilibrium Macroscopic Fluctuation--
液晶中的图案形成--场的对称性和非平衡宏观涨落--
- 批准号:
14340123 - 财政年份:2002
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Pattern Formation in Nonequilibrium Dissipative Systems-Dynamics of Dissipative Structures in Liquid Crystals
非平衡耗散系统中的图案形成-液晶耗散结构动力学
- 批准号:
10440117 - 财政年份:1998
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Development of Scanning Tunneling Microscope Operated under High Pressure Environments
高压环境下扫描隧道显微镜的研制
- 批准号:
09555101 - 财政年份:1997
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
PATTERN FORMATION AND SYMMETRY OF FIELDS IN ELECTROHYDRODYNAMICSS IN LIQUID CRYSTALS
液晶电化学场的图案形成和对称性
- 批准号:
08454107 - 财政年份:1996
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Pattern Formation and Turbulence in Electrohydrodynamic Instability
电流体动力学不稳定性中的图案形成和湍流
- 批准号:
02452047 - 财政年份:1990
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Numerical study on ferroelectric nematic liquid crystal of rod molecules
棒状分子铁电向列液晶的数值研究
- 批准号:
21K03486 - 财政年份:2021
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ferroelectricity and the nematic liquid crystal phase
铁电性和向列液晶相
- 批准号:
EP/V048775/1 - 财政年份:2021
- 资助金额:
$ 3.39万 - 项目类别:
Research Grant
Mathematical analysis of nematic liquid crystal flows
向列液晶流动的数学分析
- 批准号:
21K13819 - 财政年份:2021
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Negative viscosity induced by electroconvection in a nematic liquid crystal
向列液晶中电对流引起的负粘度
- 批准号:
18H01374 - 财政年份:2018
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Chiroptical resolution and thermal switching of chirality in conjugated polymer luminescence using selective reflection and transmission of chiral nematic liquid crystal
利用手性向列液晶的选择性反射和透射进行共轭聚合物发光中手性的手性光学分辨率和热切换
- 批准号:
17K19156 - 财政年份:2017
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Modelling the Optical Switching of Ellipsoidal Nematic Liquid Crystal Droplets for Polymer Dispersed Liquid Crystal Devices
模拟聚合物分散液晶器件的椭球向列液晶液滴的光学开关
- 批准号:
482029-2015 - 财政年份:2015
- 资助金额:
$ 3.39万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1522869 - 财政年份:2014
- 资助金额:
$ 3.39万 - 项目类别:
Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1265574 - 财政年份:2013
- 资助金额:
$ 3.39万 - 项目类别:
Continuing Grant
Calorimetric study of an orientational transition in a nematic liquid crystal
向列液晶取向转变的量热研究
- 批准号:
25800232 - 财政年份:2013
- 资助金额:
$ 3.39万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Polymer Ordering in a Nematic Liquid Crystal: An Off-Lattice Monte Carlo Simulation Study
向列液晶中的聚合物排序:离晶格蒙特卡罗模拟研究
- 批准号:
416232-2011 - 财政年份:2011
- 资助金额:
$ 3.39万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




