A Stydy of Noulineer Data Analysis by Using Connectinonist Model

应用Connectinonist模型的Noulineer数据分析研究

基本信息

  • 批准号:
    05808028
  • 负责人:
  • 金额:
    $ 0.96万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1993
  • 资助国家:
    日本
  • 起止时间:
    1993 至 1994
  • 项目状态:
    已结题

项目摘要

This research is to analyze the properties of nonlinear mapping model (e.g.Multilayr Neural Network) in conjunction with number of parameters in the model.and to establish funda mental methodology of statistical data analysis in nonlinear framework. In order to do this.differential geometrical feature of nonlinear mapping is defined and utilized for expansion of multivariate data analysis such as.discriminant analysis and function approximation for regression analysis. In the course of research.more significant and general concept is introduced called "Mapping's Feature Density" which.over the boundary of differential geometry.can express various geometrical properties.by expanding the above concept of differential geometrical feature.Summary of the whole content resulted by the research are ;1. Introduction of Mapping Feature DensityIn nonlinear mappings.considering a certain countable quantity representing the geometrical property of a manifold spanned in the output space of a mappin … More g.the "mapping capacity" of a model (i.e.family of mappings) is.in a sense.indicated by a histogram which is generated by accumulating the above quantity varying the parameters contained in a model over the whole parameter space.This histogram or the density function is called Mapping Feature Density (MFD). By comparing MFD of several mapping model in terms of Kullbach's divergence.geometrical similarity can also be estimated.2. Function approximation and MFDWhen a global curvature.integrated value of absolute curvature over the curve.is used as an above quantity.the MFD can evaluate capability of function approximation of one-input one-output neural networks.It is expected that the mapping capacity becomes larger by increasing the number of hidden units.which is confirmed by both of theoretical and experimental means.MFD of the polynomial function with n'th order also has the same tendency in terms of the order n.Some remarkable conclusions are derived by comparing these two sets of MFD.3. Discriminant analysis and MFDThe above global curvature is used as the quantity of MFD for application of estimation of the geometrical complexity of a boundary between two categories in the feature space.this is involved in a problem of nonlinear discriminant analysis.Assuming that each category contains several "cores", each of which consists of a Gaussian distribution.MFD of space-to-category mapping is a function of number of cores and dimension (of feature space). The same tendency is obtained as for three layr Perceptrons in terms of number of hidden units.By using this, some remarkable conclusions are derived by comparing these two sets of MFD.The result can be applied for estimation of the optimal model in problem of nonlinear discrimination. Less
本研究旨在结合模型中的参数数量来分析非线性映射模型(例如多层神经网络)的特性,并建立非线性框架下统计数据分析的基本方法。为此,定义了非线性映射的微分几何特征,并将其用于多元数据分析的扩展,例如用于回归分析的判别分析和函数逼近。在研究过程中,通过扩展上述微分几何特征的概念,引入了一个更有意义、更普遍的概念“映射特征密度”,它超越了微分几何的边界,可以表达各种几何性质。整个研究内容概括如下: 1.映射特征密度的介绍在非线性映射中。考虑表示在映射输出空间中跨越的流形的几何属性的某个可数量…更多g.模型(即映射族)的“映射容量”在某种意义上由直方图表示,该直方图是通过累积上述量来改变模型中包含的参数在整个参数上生成的 该直方图或密度函数称为映射特征密度(MFD)。通过比较几种映射模型的MFD,用库尔巴赫散度来估计几何相似度。 2.函数逼近和MFD当以全局曲率、曲线上绝对曲率的积分值作为上述量时,MFD可以评价一输入一输出神经网络的函数逼近能力。预计通过增加隐藏单元的数量,映射能力会变大。这一点得到了理论和实验手段的证实。n阶多项式函数的MFD也有 通过比较这两组MFD,得出了一些显着的结论。3.判别分析和 MFD 上述全局曲率被用作 MFD 的量,用于估计特征空间中两个类别之间的边界的几何复杂性。这涉及到一个非线性判别分析的问题。假设每个类别包含多个“核心”,每个核心都由高斯分布组成。空间到类别映射的 MFD 是核心数量和维度(的 特征空间)。三层感知器在隐藏单元数量方面也得到了相同的趋势。利用这一点,通过比较这两组MFD,得出了一些显着的结论。结果可以应用于非线性判别问题中最优模型的估计。较少的

项目成果

期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
松本 哲也: "幾何学的観点から見た多層パーセプトロンの能力評価" 電子情報通信学会技術報告. NC93-38. 57-62 (1993)
Tetsuya Matsumoto:“从几何角度评估多层感知器的性能”IEICE NC93-38 (1993)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tetsuya Matsumoto: "Evaluation of the Capability of Multilayer Perceptrou Using Total Curvature of Hypersurface in the Output Space" Proc.Iut'l Joint Conf.on Neural Nets 1993(INNS&IEEE). 2of3. 1443-1446 (1993)
Tetsuya Matsumoto:“使用输出空间中超曲面的总曲率评估多层感知能力”Proc.Iutl Joint Conf.on Neural Nets 1993(INNS)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Nemoto: "A Study on Relationship Between Gesmetrical Property of Nonlinear Mapping and Its Capability" Master's Thesis,Graduate School of Engineering Ibaraki University. (1995)
M.Nemoto:“非线性映射的几何性质与其能力之间的关系研究”,茨城大学工学研究科硕士论文。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tatsuhiro Yonekura: "Piecewise Lineer Factor Analysis by Four Layer Neural Nets and Its Application for Modeling the Pavtial Discharge Data" Proc.2nd Int'l Forum on Appl.of Neural Net Power Systems(IEEE). 1. PP.475-480 (1993)
Tatsuhiro Yonekura:“四层神经网络分段线性因子分析及其在空间放电数据建模中的应用”Proc.2nd 国际神经网络电力系统应用论坛 (IEEE)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
根本 正清: "写像の幾何学的特徴を用いた非線形モデルの関数近似能力評価法の提案" 電子情報通信学会春季全国大会論文集. D29. 30-31 (1995)
Masakiyo Nemoto:“提出一种使用映射几何特征评估非线性模型的函​​数逼近能力的方法”,IEICE 春季全国会议论文集 D29(1995 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YONEKURA Tatsuhiro其他文献

YONEKURA Tatsuhiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YONEKURA Tatsuhiro', 18)}}的其他基金

Fundamentals of Edutainment Contents' Creation on the Internet
互联网寓教于乐内容创作基础
  • 批准号:
    18300027
  • 财政年份:
    2006
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Virtual Environment on the Inter-network Realizing, the Real-time Interaction
网络虚拟环境实现实时交互
  • 批准号:
    14580442
  • 财政年份:
    2002
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the Environment of the Virtual Real-Time Media via the Networks
论网络虚拟实时媒体环境
  • 批准号:
    12680404
  • 财政年份:
    2000
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On Human Factor in a Virtual Space Integrating Visual Auditory and tactile Modalities
视觉听觉触觉相结合的虚拟空间中的人为因素
  • 批准号:
    09838004
  • 财政年份:
    1997
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了