Convergence Guarantees for Modern Evolution Strategies
现代进化策略的收敛保证
基本信息
- 批准号:442436089
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The primary role of optimization heuristics is to address challenging problems for which no efficient exact solvers exist. This paradigm is particularly prominent in the field of black-box optimization, where only weak and implicit assumptions are made about the problem structure. Mathematical optimization covers many important problem classes. Black-box heuristics, designed with minimal assumptions in mind, aim to cover the wide range of problems outside that domain.An extremely successful class of algorithms for gradient-free black-box optimization in continuous search spaces are evolution strategies (ESs), a sub-class of evolutionary algorithms. These randomized zeroth-order optimization methods sample search points from a distribution and adapt the distribution afterwards based on the observed objective values. For flexible classes of search distributions this design yields equally flexible solvers. The state of the art is marked by the covariance matrix adaptation (CMA) evolution strategy, CMA-ES, which is applied in a wide range of domains, like industrial design and machine learning. It demonstrates high practical efficiency in benchmarks and competitions. From a theoretical perspective, a major downside of ESs is a lack of convergence guarantees, which are limited to simplistic ESs and restricted function classes.With new proof techniques available, this situation has recently improved significantly. The most notable breakthrough is the application of drift analysis to ESs. It yielded the first result showing the convergence of an ES on a rather large class of problems, namely strongly convex problems. Similar progress was achieved in understanding the principal limitations of ESs, i.e., edge cases where they fail to converge to a local optimum. However, none of the existing works covers CMA-ES. The lack of the highly relevant CMA mechanism in the analysis marks a major disconnect between theory and practice.Filling this research gap is a major step towards a complete understanding of the convergence of CMA-ES on wide classes of problems. We will provide the first rigorous convergence proof of an ES with CMA. Starting with the rather simple (1+1)-CMA-ES on convex quadratic functions we will gradually increase the complexity to non-elitist algorithms with stateful step size control rules, and to significantly larger problem classes. We aim at proofs of linear convergence (the behavior observed in practice), at the correct dependency of the convergence rate on problem difficulty, and at an analysis of the dependency of the first hitting times on initial conditions that does not hide relevant effects behind (huge) constants. Taken together, these steps will mark a major milestone of our understanding of state-of-the-art search and optimization heuristics.
优化算法的主要作用是解决没有有效精确求解器的具有挑战性的问题。这种范式在黑盒优化领域尤其突出,在黑盒优化中,对问题结构只做了弱的和隐含的假设。数学优化涵盖了许多重要的问题类别。黑箱算法是一种基于最小假设的算法,它的目标是解决该领域之外的各种问题。在连续搜索空间中,一种非常成功的无梯度黑箱优化算法是进化策略(ES),它是进化算法的一个子类。这些随机零阶优化方法从分布中采样搜索点,然后根据观察到的目标值调整分布。对于搜索分布的灵活类,这种设计产生同样灵活的求解器。协方差矩阵自适应(CMA)进化策略(CMA-ES)是最先进的,它被广泛应用于工业设计和机器学习等领域。它在基准测试和竞赛中表现出很高的实用效率。从理论的角度来看,ES的一个主要缺点是缺乏收敛保证,这仅限于简单的ES和受限的函数类。随着新的证明技术的出现,这种情况最近得到了显着改善。最显著的突破是将漂移分析应用于ES。它产生了第一个结果,显示ES在相当大的一类问题上的收敛性,即强凸问题。在理解ES的主要局限性方面也取得了类似的进展,即,边缘情况,即它们未能收敛到局部最优值。然而,现有的工程都没有涵盖CMA-ES。在分析中缺乏高度相关的CMA机制标志着理论与实践之间的重大脱节。填补这一研究空白是朝着全面理解CMA-ES在广泛类别问题上的收敛性迈出的重要一步。我们将提供第一个严格的收敛证明的ES与CMA。从凸二次函数上的相当简单的(1+1)-CMA-ES开始,我们将逐渐增加具有状态步长控制规则的非精英算法的复杂性,以及显着更大的问题类。我们的目标是证明线性收敛(在实践中观察到的行为),在正确的依赖问题的难度收敛速度,并在分析的依赖性的第一次击中时间的初始条件,不隐藏相关的影响背后(巨大的)常数。总的来说,这些步骤将标志着我们对最先进的搜索和优化算法的理解的一个重要里程碑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Tobias Glasmachers其他文献
Professor Dr. Tobias Glasmachers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Tobias Glasmachers', 18)}}的其他基金
Parallel Support Vector Machine Training on a Budget
预算内的并行支持向量机训练
- 批准号:
418003699 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Dual Training of Nonlinear Support Vector Machines on a Budget
预算内非线性支持向量机的双重训练
- 批准号:
287461288 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Formal Guarantees for Neurosymbolic Programs via Conformal Prediction
职业:通过保形预测对神经符号程序提供正式保证
- 批准号:
2338777 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Dual Reinforcement Learning: A Unifying Framework with Guarantees
职业:双重强化学习:有保证的统一框架
- 批准号:
2340651 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: FMitF: Track I: DeepSmith: Scheduling with Quality Guarantees for Efficient DNN Model Execution
合作研究:FMitF:第一轨:DeepSmith:为高效 DNN 模型执行提供质量保证的调度
- 批准号:
2349461 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
- 批准号:
2226901 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
- 批准号:
2226900 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
- 批准号:
2237322 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Performance Guarantees for Electric Vehicle Fast Charging Station Management
电动汽车快速充电站管理的绩效保证
- 批准号:
2312196 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
RI: Medium: Techniques for Massive-Scale Strategic Reasoning: Imperfect-Information Subgame Solving and Offering Guarantees in Simulation-Based Games
RI:中:大规模战略推理技术:不完美信息子博弈解决并在模拟游戏中提供保证
- 批准号:
2312342 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant