Alloy Design for Paticle Strengthened Materials for High Temperature Use

高温用颗粒强化材料的合金设计

基本信息

  • 批准号:
    06650767
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 1995
  • 项目状态:
    已结题

项目摘要

Particle strengthening is the most effective way for improving creep strength. This study aims at providing basic knowledge of alloy design for particle strengthened (PS) materials.1. Many of PS materials are strengthened by thermally unstable precipitates. The coarsening of the precipitates strongly affects creep properties of PS materials. Creep data of PS materials have been analyzed by the following creep equation based on non-steady-state creep concept :epsilon=A {1-exp(-alphat)} +beta {exp(alphat)-1} epsilon : strain, t : time (1)This equation has three parameters, A,B and alpha, that characterize creep deformation. These parameters provide useful information about microstructural degradation, creep mechanism and alloy design.2. PS materials often have an elongated grain shape made by hot extrusion. The grain shape has a significant effect on creep strength. Creep deformation is constrained at grain boundaries due to the compatibility requirement. Grain boundary sliding releases the constraint, and consequently enhances creep deformation. This is the cause of the grain shape dependent creep strength.3. Creep of alpha_2-Ti_3Al/gamma-TiAl lamellar intermetallics has been studied as an example of composite materials. Coarsening of colony size and increase in gamma volume fraction result in higher creep resistance. Lamellar spacing, however, has no effect on creep strength.4. In the alloy design, we must know creep properties under a service condition of the material. The long term properties are evaluated by extrapolation from short term data, and the extrapolation introduces an error. The cause of the extrapolation error has been discussed, and it has been proposed how to eliminate the extrapolation error.
颗粒强化是提高蠕变强度的最有效途径。本研究旨在为颗粒强化(PS)材料的合金设计提供基础知识.许多PS材料是由热不稳定的沉淀物强化的。析出相的粗化强烈影响PS材料的蠕变性能。PS材料的蠕变数据已通过以下基于非稳态蠕变概念的蠕变方程进行分析:ε =A {1-exp(-ε at)} + β {exp(ε at)-1} ε:应变,t:时间(1)该方程具有表征蠕变变形的三个参数A、B和α。这些参数为合金的组织退化、蠕变机制和合金设计提供了有用的信息. PS材料通常具有通过热挤出制成的细长颗粒形状。晶粒形状对蠕变强度有显著影响。由于相容性要求,蠕变变形被限制在晶界处。晶界滑移释放了约束,从而增强了蠕变变形。这是晶粒形状相关蠕变强度的原因.以复合材料为例,研究了α_2-Ti_3Al/γ-TiAl片状金属间化合物的蠕变行为。菌落尺寸的粗化和γ体积分数的增加导致更高的抗蠕变性。片层间距对蠕变强度没有影响.在合金设计中,我们必须了解材料在使用条件下的蠕变性能。通过从短期数据外推来评估长期性质,并且外推引入误差。讨论了外推误差产生的原因,并提出了消除外推误差的方法。

项目成果

期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
丸山 公一: "時間-温度パラメータ法におけるクリープ寿命外挿誤差" 鉄と鋼. 80. 336-341 (1994)
Koichi Maruyama:“时间-温度参数法中的蠕变寿命外推误差”Tetsu-to-Hagane 80. 336-341 (1994)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Maruyama: "Creep Deformation of a Dual-Phase TiAl/Ti_3Al Alloy with Fully Transformed Lamellar Structure" Proc. 9th Symp. on Strength of Materials. 21-31 (1995)
K. Maruyama:“具有完全转变层状结构的双相 TiAl/Ti_3Al 合金的蠕变变形”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
丸山 公一: "時間-温度パラメータ法におけるク-プ寿命外挿誤差" 鉄と鋼. 80. 336-341 (1994)
Koichi Maruyama:“时间-温度参数法中的轿跑车寿命外推误差”Tetsu-to-Hagane 80. 336-341 (1994)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Maruyama: "Life Assessment of Elevated Temperature Components by Reference to Creep Damage" J.Japan Welding Society. Vol. 63, No. 8. 576-588 (1994)
K.Maruyama:“参照蠕变损伤对高温部件进行寿命评估”J.Japan Welding Society。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Maruyama, T.Kiyokawa, H.Nakakuki and H.Oikawa: "Creep Deformation of a Dual-Phase TiAl/Ti_3Al Alloy with Fully Transformed Lamallar Structure" Proc. 9th Conf. on Mechanical Behavior of Materials. 21-31 (1995)
K.Maruyama、T.Kiyokawa、H.Nakakuki 和 H.Oikawa:“具有完全转变层状结构的双相 TiAl/Ti_3Al 合金的蠕变变形”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARUYAMA Kouichi其他文献

MARUYAMA Kouichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARUYAMA Kouichi', 18)}}的其他基金

Life Evaluation of Heat Resistant Steels with a Tempered Martensite Structure
回火马氏体组织耐热钢的寿命评价
  • 批准号:
    23360296
  • 财政年份:
    2011
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Interfacial Science of Nano-lamellar Materials
纳米层状材料的界面科学
  • 批准号:
    19206066
  • 财政年份:
    2007
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Strengthening of Nano-lamellar Materials by Controlling of Nano-structure of Lamellar Interface
通过控制层状界面的纳米结构强化纳米层状材料
  • 批准号:
    17360309
  • 财政年份:
    2005
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Upper Limit of Strengthening and Its Improvement in Nano-lamellar Materials
纳米层状材料的强化上限及其改进
  • 批准号:
    15360361
  • 财政年份:
    2003
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Improvement of Structural Design Rule for Efficient Use of Heat Resistant Materials
改进结构设计规则以有效利用耐热材料
  • 批准号:
    13555182
  • 财政年份:
    2001
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantitative Analysis of Strengthening Mechanism of Titanium Aluminide by Means of Microstructural Stabilization
微观结构稳定化铝化钛强化机制的定量分析
  • 批准号:
    11450259
  • 财政年份:
    1999
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Nondestructive Assessment Methodology for Residual Life of Martensitic Heat Resistant Steel
马氏体耐热钢剩余寿命无损评估方法的发展
  • 批准号:
    10555225
  • 财政年份:
    1998
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Microstructural Design of Two Phase Titanium Aluminides for High Temperature Applications
高温应用两相钛铝化物的微观结构设计
  • 批准号:
    08455313
  • 财政年份:
    1996
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Alloy Design and Evaluation Systems for High Temperature Materials Based on Non-Steady-State Creep Concept
基于非稳态蠕变概念的高温材料合金设计与评价系统开发
  • 批准号:
    07555653
  • 财政年份:
    1995
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Strengthening Mechanism and Alloy Design for a Heat-Resisting Light Intermetallics Titanium Aluminide
耐热轻质金属间化合物铝化钛的强化机制及合金设计
  • 批准号:
    03650564
  • 财政年份:
    1991
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

SBIR Phase I: Advanced Manufacturing of Oxide Dispersion-Strengthened Superalloys for High Temperature Creep and Hydrogen Environment Applications
SBIR 第一阶段:用于高温蠕变和氢环境应用的氧化物弥散强化高温合金的先进制造
  • 批准号:
    2335531
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Standard Grant
High-Temperature Creep Mechanism of Dual-Ductile-Phase Magnesium alloy with Long-Period Stacking Ordered Phase
长周期堆垛有序相双韧性相镁合金的高温蠕变机理
  • 批准号:
    16K06707
  • 财政年份:
    2016
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
High-Temperature Creep Behavior of SiOC-Based Glasses and Glass-Ceramics
SiOC 基玻璃和微晶玻璃的高温蠕变行为
  • 批准号:
    247069226
  • 财政年份:
    2013
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Research Grants
Strain Acceleration and Transition Objective Index and Deformation Mechanisms in High Temperature Creep
高温蠕变应变加速和转变目标指标及变形机制
  • 批准号:
    24560842
  • 财政年份:
    2012
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
In situ evaluation of high temperature creep deformation behavior of single-crystal nickel-based superalloy
单晶镍基高温合金高温蠕变变形行为的原位评价
  • 批准号:
    22760549
  • 财政年份:
    2010
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
High-Temperature Creep Testing Method using Small Sample Specimens
使用小样本的高温蠕变测试方法
  • 批准号:
    22560072
  • 财政年份:
    2010
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Experimental Verification of Homogeneous/ Heterogeneous Deformation in High Temperature Creep of Inclusion Bearing Material
夹杂轴承材料高温蠕变均匀/非均匀变形的实验验证
  • 批准号:
    14350374
  • 财政年份:
    2002
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development and Application of a New Model for High Temperature Creep Based on the Jogged-Screw Model
基于Jogged-Screw模型的高温蠕变新模型的开发与应用
  • 批准号:
    0116126
  • 财政年份:
    2001
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Continuing Grant
HIGH-TEMPERATURE CREEP BEHAVIOR OF REINFORECEMENT FIBERS FOR CERAMIC MATRIX COMPOSITES AND CHARACTERISTICS FOR SEVERE ENVIRONMENTS
陶瓷基复合材料增强纤维的高温蠕变行为及恶劣环境特性
  • 批准号:
    11450255
  • 财政年份:
    1999
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Prediction of High-temperature Creep Deformation for Precipitation Hardened Aollys
沉淀硬化Aollys高温蠕变变形的预测
  • 批准号:
    08650809
  • 财政年份:
    1996
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了