Upper Limit of Strengthening and Its Improvement in Nano-lamellar Materials

纳米层状材料的强化上限及其改进

基本信息

  • 批准号:
    15360361
  • 负责人:
  • 金额:
    $ 9.79万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

TiAl alloys are the most promising light material for high temperature structural applications. The alloys take a lamellar structure consisting of α_2Ti_3Al and γ TiAl phases, and their strength increases with decreasing lamellar thickness. However there is an upper limit in the strengthening. In this study the causes of the upper limit were examined and it was proposed how to improve the upper limit.1.Misfit dislocations on α_2/γ lamellar boundaries disappear when lamellar thickness λ is reduced below 50nm, resulting in loss of boundary resistance to dislocation motion. Therefore, the yield stress vs. 1/√<λ> curve deviates from the Hall-Petch relation and yield stress has an upper limit at fine λ.2.The upper limit of yield stress can be improved if we can introduce the misfit dislocations to α_2/γ lamellae less than 50nm thickness. Lattice misfit determines the lower limit of lamellar thickness for the introduction of misfit dislocations, and a lattice misfit larger than 1.5% is required to improve the upper limit.3.Coarsening and sphoroidization of lamellae are the major microstructural degradation that cause loss of deformation resistance. The degradation is driven by the interfacial energy and is faster in finer lamellar structure. The degradation proceeds by the migration of lamellar boundaries, and can be retarded by reducing the mobility of lamellar boundaries.4.TiAl alloys contain four types of lamellar boundaries, and the α_2/γ boundaries have the lowest mobility. It was confirmed that a material having a high density of α_2/γ boundaries shows better creep deformation resistance due to its improved microstructure stability.
TIAL合金是高温结构应用的最有希望的轻质材料。合金采用由α_2TI_3AL和γTIAL相组成的层状结构,其强度随着层状厚度的降低而增加。但是,加强有上限。在这项研究中,检查了上限的原因,并提出了如何改善上限。1。当层状厚度λ降低到50nm以下时,对α_2/γ层状边界的脱位消失了,从而导致对位错运动的边界抵抗力丧失。因此,屈服应力与1/√<λ>曲线偏离了霍尔西蚀刻关系,而屈服应力在细λ2上具有上限。22。如果我们可以将MISDFIT位错引入α_2/γ层状层状小于50nm的厚度,则可以提高屈服应力的上限。晶格刻度贴层确定层状厚度的下限以引入畸形位错,并且需要大于1.5%的晶格Missfit来改善上限。3。层状和固定层的固定化和sphoroidation是导致抗变形损失的主要显微结构降解。降解是由界面能量驱动的,并且在较细的层状结构中更快。降解是通过层状边界的迁移来进行的,并且可以通过降低层状边界的迁移率来阻碍。4。tial合金包含四种类型的层状边界,并且α_2/γ边界具有最低的迁移率。已经证实,由于其改善的微观结构稳定性,具有高密度α_2/γ边界的材料显示出更好的蠕变发育耐药性。

项目成果

期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of Lamellar Boundary Structural Change on Lamellar Size Hardening of TiAl Alloy
层状晶界结构变化对TiAl合金层状尺寸硬化的影响
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    丸山将行;辻宏之;若菜弘允;大森慎吾;河野隆二;K.Maruyama
  • 通讯作者:
    K.Maruyama
K.Maruyama: "Effects of Lamellar Boundary Structural Change on Lamellar Size Hardening of TiAl Alloy"Acta Materialia. 53(印刷中). (2004)
K.Maruyama:“层状边界结构变化对 TiAl 合金层状尺寸硬化的影响”Acta Materialia 53(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Maruyama: "Effects of α_2 Spacing on Creep Deformation Behavior of Hard Oriented PST Crystals of a Lamellar TiAl Alloy"Materials Science Forum. 426-432. 1751-1756 (2003)
K. Maruyama:“α_2 间距对层状 TiAl 合金硬取向 PST 晶体蠕变行为的影响”材料科学论坛 426-432(2003 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Y.Kim: "Stability of lamellar microstructure of hard oriented PST crystal of TiAl alloy"Acta Materialia. 51・8. 2191-2204 (2003)
H.Y.Kim:“TiAl 合金硬取向 PST 晶体的层状微观结构的稳定性”Acta Materialia 51・8(2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
丸山公一(分担): "設備管理技術事典"産業技術サービスセンター. 8 (2003)
丸山浩一(撰稿人):《设备管理技术百科全书》工业技术服务中心8(2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARUYAMA Kouichi其他文献

MARUYAMA Kouichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARUYAMA Kouichi', 18)}}的其他基金

Life Evaluation of Heat Resistant Steels with a Tempered Martensite Structure
回火马氏体组织耐热钢的寿命评价
  • 批准号:
    23360296
  • 财政年份:
    2011
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Interfacial Science of Nano-lamellar Materials
纳米层状材料的界面科学
  • 批准号:
    19206066
  • 财政年份:
    2007
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Strengthening of Nano-lamellar Materials by Controlling of Nano-structure of Lamellar Interface
通过控制层状界面的纳米结构强化纳米层状材料
  • 批准号:
    17360309
  • 财政年份:
    2005
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Improvement of Structural Design Rule for Efficient Use of Heat Resistant Materials
改进结构设计规则以有效利用耐热材料
  • 批准号:
    13555182
  • 财政年份:
    2001
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantitative Analysis of Strengthening Mechanism of Titanium Aluminide by Means of Microstructural Stabilization
微观结构稳定化铝化钛强化机制的定量分析
  • 批准号:
    11450259
  • 财政年份:
    1999
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Nondestructive Assessment Methodology for Residual Life of Martensitic Heat Resistant Steel
马氏体耐热钢剩余寿命无损评估方法的发展
  • 批准号:
    10555225
  • 财政年份:
    1998
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Microstructural Design of Two Phase Titanium Aluminides for High Temperature Applications
高温应用两相钛铝化物的微观结构设计
  • 批准号:
    08455313
  • 财政年份:
    1996
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Alloy Design and Evaluation Systems for High Temperature Materials Based on Non-Steady-State Creep Concept
基于非稳态蠕变概念的高温材料合金设计与评价系统开发
  • 批准号:
    07555653
  • 财政年份:
    1995
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Alloy Design for Paticle Strengthened Materials for High Temperature Use
高温用颗粒强化材料的合金设计
  • 批准号:
    06650767
  • 财政年份:
    1994
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Strengthening Mechanism and Alloy Design for a Heat-Resisting Light Intermetallics Titanium Aluminide
耐热轻质金属间化合物铝化钛的强化机制及合金设计
  • 批准号:
    03650564
  • 财政年份:
    1991
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似国自然基金

钛合金表面微区电势差特征促细胞功能表达及其免疫微环境作用机制
  • 批准号:
    32371390
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
TC17钛合金整体叶盘切削加工表层梯度结构主动调控机制
  • 批准号:
    52305506
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
激光选区熔化钛合金热等静压缺陷愈合诱发再结晶机理与疲劳性能研究
  • 批准号:
    52305334
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
钛合金超声-磁场同轴复合TIG焊电弧物理特性及熔池冶金调控
  • 批准号:
    52305362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
钛合金中氢化钛析出机制及氢脆问题的原子尺度研究
  • 批准号:
    52301007
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a Powder Based Manufacturing Route for Affordable Titanium Aluminide Sheet for Nacelle Engine Applications
开发用于短舱发动机应用的经济实惠的铝化钛板的粉末制造路线
  • 批准号:
    2879735
  • 财政年份:
    2023
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Studentship
Development of oxidation and fretting-wear resistant coatings on Titanium Aluminide (TiAl) components
铝化钛 (TiAl) 部件抗氧化和微动磨损涂层的开发
  • 批准号:
    500663-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Collaborative Research and Development Grants
Development of oxidation and fretting-wear resistant coatings on Titanium Aluminide (TiAl) components
铝化钛 (TiAl) 部件抗氧化和微动磨损涂层的开发
  • 批准号:
    500663-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Collaborative Research and Development Grants
Development of oxidation and fretting-wear resistant coatings on Titanium Aluminide (TiAl) components
铝化钛 (TiAl) 部件抗氧化和微动磨损涂层的开发
  • 批准号:
    500663-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Collaborative Research and Development Grants
Development of oxidation and fretting-wear resistant coatings on Titanium Aluminide (TiAl) components
铝化钛 (TiAl) 部件抗氧化和微动磨损涂层的开发
  • 批准号:
    500663-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 9.79万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了