MIEdeep - Medical Information Extraction for German Medical Texts using Deep Learning Methods
MIEdeep - 使用深度学习方法提取德国医学文本的医学信息
基本信息
- 批准号:443363368
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A steadily growing pool of German unstructured medical texts created a need for a robust, data-driven and modular software framework for medical information extraction, which benefits from most recent achievements in deep learning in the domain of natural language processing (NLP). This need has not been sufficiently addressed by current research especially in the context of German medical textual data. We propose MIEdeep (Medical Information Extraction using deep learning) to (i) integrate state-of-the-art deep learning approaches for data preparation, computer-assisted rapid training data creation and medical information extraction and (ii) to make these technologies available for clinical researchers by plugging them into a modern, easy-to-access graphical user interface.In particular, we use data programming, which enables users to rapidly create large amounts of labeled training data without the need for time consuming and costly manual annotation. We build on these labeled training data to integrate state-of-the-art supervised deep learning models for medical information extraction. MIEdeep wraps these steps up into one intuitive and easy-to-use graphical user interface to make deep learning approachable for clinical domain experts.Our proposal aims to leverage the vast pool of unstructured medical data from clinical routine for secondary use cases like clinical research. The use of data programming to create training data could finally bring together healthcare data and deep learning models. In a following project these research outcomes can be used as decision support of the medical staff, thus to improve patient treatment. This project has the potential to create impact on research in clinical NLP, by providing a robust software framework using a state-of-the-art method for rapid training data creation to address current obstacles in medical information extraction. The extracted information can then be fed back into clinical routines and procedures. As the MIEdeep framework can be applied in different clinical settings, we aim to provide the framework under a creative commons license and to publish it on a public repository. This enables us, to disseminate the ongoing work and to interact with potential stakeholders and end-users.
德国非结构化医学文本的稳定增长需要一个强大的,数据驱动的和模块化的软件框架来进行医学信息提取,这得益于自然语言处理(NLP)领域深度学习的最新成就。目前的研究还没有充分解决这一需求,特别是在德国医学文本数据的背景下。我们建议MIEdeep(使用深度学习的医学信息提取),以(i)整合最先进的深度学习方法进行数据准备,计算机辅助快速训练数据创建和医学信息提取,以及(ii)通过将这些技术插入现代化,易于访问的图形用户界面,使临床研究人员可以使用这些技术。特别是,我们使用数据编程,这使得用户能够快速创建大量的标记训练数据,而不需要耗时且昂贵的手动注释。我们在这些标记的训练数据的基础上,整合了最先进的监督深度学习模型,用于医学信息提取。MIEdeep将这些步骤包装成一个直观易用的图形用户界面,使深度学习对临床领域专家变得平易近人。我们的建议旨在利用来自临床常规的大量非结构化医疗数据,用于临床研究等次要用例。使用数据编程来创建训练数据最终可以将医疗数据和深度学习模型结合在一起。在接下来的项目中,这些研究成果可以作为医务人员的决策支持,从而改善患者的治疗。该项目有可能对临床NLP研究产生影响,通过提供一个强大的软件框架,使用最先进的方法快速创建训练数据,以解决当前医学信息提取中的障碍。然后,提取的信息可以反馈到临床常规和程序中。由于MIEdeep框架可以应用于不同的临床环境,我们的目标是在知识共享许可下提供框架,并将其发布在公共存储库中。这使我们能够传播正在进行的工作,并与潜在的利益相关者和最终用户进行互动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Christoph Dieterich其他文献
Professor Dr. Christoph Dieterich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Christoph Dieterich', 18)}}的其他基金
Deciphering the functions of human exon junction complexes
破译人类外显子连接复合物的功能
- 批准号:
418083979 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Molecular mechanisms of m6A mRNA modification in Drosophila neurogenesis
果蝇神经发生中 m6A mRNA 修饰的分子机制
- 批准号:
404953711 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Priority Programmes
Deciphering human nonsense-mediated mRNA decay (NMD)
破译人类无义介导的 mRNA 衰变 (NMD)
- 批准号:
313641849 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Circular RNAs: novel regulators of dendritic protein synthesis during mammalian synapse development
环状RNA:哺乳动物突触发育过程中树突蛋白合成的新型调节因子
- 批准号:
255069996 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Priority Programmes
Podocyte lncRNAs – a novel player in focal-segmental glomerulosclerosis
足细胞lncRNAs——局灶节段性肾小球硬化症的新参与者
- 批准号:
398508019 - 财政年份:
- 资助金额:
-- - 项目类别:
Clinical Research Units
circtools - a bioinformatics toolbox for circular RNA analysis
circtools - 用于循环 RNA 分析的生物信息学工具箱
- 批准号:
443187912 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
Simultaneous Wireless Power and Information Transfer for Medical Implants by Near-field Coupling
通过近场耦合实现医疗植入物的同步无线供电和信息传输
- 批准号:
23KF0225 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of dual-energy CT analysis for reuse of medical information supporting the Next-Generation Medical Infrastructure Act in Japan
开发双能 CT 分析以重复利用医疗信息,支持日本下一代医疗基础设施法案
- 批准号:
23K14922 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Information Processing for Medical Image Understanding
医学图像理解的信息处理
- 批准号:
RGPIN-2018-04430 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Medical Information Service via mobile Telephone (m-MIST TM) Provider Support to Improve Pregnancy Outcomes
通过移动电话 (m-MIST TM) 提供医疗信息服务以改善妊娠结果
- 批准号:
10705809 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Development and evaluation of patient medical summary from health information exchange to improve dental care
通过健康信息交换开发和评估患者医疗摘要以改善牙科护理
- 批准号:
10344183 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Visualization of auscultatory findings with an electronic stethoscope and renovation of electronic medical records with objective auscultation information
使用电子听诊器可视化听诊结果并利用客观听诊信息更新电子病历
- 批准号:
22K12877 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Medical Information Service via mobile Telephone (m-MIST TM) Provider Support to Improve Pregnancy Outcomes
通过移动电话 (m-MIST TM) 提供医疗信息服务以改善妊娠结果
- 批准号:
10672690 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Using electronic medical record (EMR) data to examine the impact of prenatal drug exposure: Evaluating availability, accuracy and utilty of exposure information
使用电子病历 (EMR) 数据检查产前药物暴露的影响:评估暴露信息的可用性、准确性和实用性
- 批准号:
10511030 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Development of Emergency Care Information System utilizing Visual On-line Medical Control
利用可视化在线医疗控制开发急救信息系统
- 批准号:
22K09114 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: SCH: Machine Learning Driven User Interfaces for Information Gathering and Synthesis from Medical Records
合作研究:SCH:机器学习驱动的用户界面,用于从医疗记录中收集和合成信息
- 批准号:
2205320 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




