Organic Computing with Artificial DNA for Reliable Dynamic Systems based on Semantic Models and Evolutionary Algorithms for Fault Diagnosis and Adaptation

基于语义模型和故障诊断和适应进化算法的可靠动态系统的人工 DNA 有机计算

基本信息

项目摘要

Organic Computing leads to significant advantages for complex dynamic systems like reduced development efforts, increased adaptability and robustness. However, for safety-critical systems which have to maintain functionality even in the presence of faults or failures (fail-operational) further properties are necessary. This includes the maintenance of the major core functionality even if non redundant system resources fail, the organic computing run-time environment is harmed or the remaining resources are insufficient to maintain all services. These failure scenarios require semantic knowledge of the system combined with fault-diagnosis and adaption techniques to properly degrade and reconfigure the system.The proposed research project addresses the corresponding research gaps and their interactions based on artificial DNA: (1) semantic description methods for organic computing systems based on artificial DNA, (2) diagnosis techniques with a high level of automation for organic computing systems using artificial DNA, and (3) adaptation techniques for such systems in highly safety-critical applications.Semantic description methods for organic computing systems with artificial DNA are the foundation for higher semantic-based failure detection and adaptation techniques.Diagnosis techniques for organic computing systems with artificial DNA can exploit the semantic descriptions to automatically build diagnosis models. Furthermore, these models can be optimized by evolutionary algorithms to improve their failure detection rates.Adaptation techniques modify the artificial DNA based on the recognized failures and the semantic description to realize the reconfiguration and degradation concepts.Within the project, the models and algorithms will be incrementally developed, prototypically implemented and evaluated using sample scenarios and failure injection experiments.
有机计算可为复杂的动态系统带来显着的优势,例如减少开发工作、提高适应性和鲁棒性。然而,对于安全关键系统来说,即使在出现故障或故障(故障操作)的情况下也必须保持功能,进一步的属性是必要的。这包括即使非冗余系统资源发生故障、有机计算运行时环境受到损害或剩余资源不足以维持所有服务,也要维护主要核心功能。这些故障场景需要系统的语义知识与故障诊断和适应技术相结合,以正确地降级和重新配置系统。所提出的研究项目解决了基于人工DNA的相应研究空白及其相互作用:(1)基于人工DNA的有机计算系统的语义描述方法,(2)使用人工DNA的有机计算系统的高度自动化诊断技术,以及(3) 具有人工DNA的有机计算系统的语义描述方法是基于语义的更高级别的故障检测和适应技术的基础。具有人工DNA的有机计算系统的诊断技术可以利用语义描述来自动构建诊断模型。此外,这些模型可以通过进化算法进行优化,以提高其故障检测率。适应技术根据识别的故障和语义描述修改人工DNA,以实现重构和退化概念。在项目内,模型和算法将使用样本场景和故障注入实验进行增量开发、原型实现和评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Uwe Brinkschulte其他文献

Professor Dr. Uwe Brinkschulte的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Uwe Brinkschulte', 18)}}的其他基金

Development and Evaluation of a hierarchical artificial hormone system for task allocation in large scaled distributed systems (HiKüHoS).
用于大规模分布式系统(HiKüHoS)中任务分配的分层人工激素系统的开发和评估。
  • 批准号:
    224969246
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
MixedCoreSoC - A Highly Dependable Self-Adaptive Mixed-Signal Multi-Core System-on-Chip
MixedCoreSoC - 高度可靠的自适应混合信号多核片上系统
  • 批准号:
    181384236
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Untersuchung und Bewertung von regelungstechnischen Prinzipien zur Verbesserung des Echtzeitverhaltens moderner Mikroprozessoren
控制工程原理的调查和评估,以提高现代微处理器的实时行为
  • 批准号:
    103897449
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
CAR-SoC - Entwurf, Realisierung und Bewertung von Techniken für Connective Autonomic Real-Time SoCs
CAR-SoC - 连接自主实时 SoC 技术的设计、实现和评估
  • 批准号:
    16809216
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Entwurf, Realisierung und Bewertung eines echtzeitfähigen Java-Systems auf einem mehrfädigen Java-Mikrocontroller
多线程 Java 微控制器上实时 Java 系统的设计、实现和评估
  • 批准号:
    5339790
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: ART@SC24: Artificial intelligence, Research computing and Training SC24 pre-conference workshop
会议:ART@SC24:人工智能、研究计算和培训 SC24 会前研讨会
  • 批准号:
    2425405
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Creating a High-Performance Computing Virtual Environment for Artificial Intelligence Education
为人工智能教育打造高性能计算虚拟环境
  • 批准号:
    2309564
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 2 Acquisition of a High-Performance Computing Cluster for Boosting Artificial Intelligence Enabled Science, Engineering, and Education in South Carolina
设备: MRI:第二轨道收购高性能计算集群,以促进南卡罗来纳州人工智能支持的科学、工程和教育
  • 批准号:
    2320292
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Track 1 Acquisition of an HPC Cluster for Artificial Intelligence, Machine Learning, Scientific Computing, and Interdisciplinary Research
MRI:第一轨道收购用于人工智能、机器学习、科学计算和跨学科研究的 HPC 集群
  • 批准号:
    2320735
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Rethinking PIM-Assisted GPU Computing for Multi-Tenant Artificial Intelligence
职业:重新思考用于多租户人工智能的 PIM 辅助 GPU 计算
  • 批准号:
    2239638
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
A National-Scale Testbed Supporting Artificial Intelligence Research Spanning the Computing Continuum
支持跨越计算连续体的人工智能研究的国家级测试平台
  • 批准号:
    2331263
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Artificial reconstitution and reservoir-computing applications of neuronal networks exhibiting high-dimensional dynamics
表现出高维动力学的神经元网络的人工重构和存储计算应用
  • 批准号:
    23H03489
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了