Magnetotactic navigation in complex environments

复杂环境下的趋磁导航

基本信息

项目摘要

Magnetotactic bacteria orient in magnetic fields with the help of a dedicated organelle, the magnetosome chain, which acts as an intracellular compass needle. In this way, their swimming, powered by their flagella, is guided by the magnetic field; the bacteria can be understood as self-propelled compass needles. Magnetotatic bacteria often live in the sediments of aquatic environments and thus swim in a milieu characterized by pores and obstacles. In this project, we use a combined theoretical and experimental approach for the quantitative characterization of magnetotactic motility in complex environments. We investigate how directional motility is achieved in such an environment and how these bacteria balance robust control of directional motion with directional flexibility to navigate through such a medium. We will trap individual bacteria in circular confinement using a microfluidic trapping approach and track their motion to study their interactions with the confining walls. Based on these observations, we will use simulations of a theoretical model to make predictions for the behavior for other confining geometries and for the presence of magnetic fields of different strengths and orientations. We will characterize different species of magnetotactic bacteria, which have different organizations of their magnetotactic apparatus and exhibit different magnetotactic behaviors. Thereby, we will obtain information about the different strategies of dealing with confinement and obstacles hindering directional motion. We will iterate experiments and modeling to have a quantitative match of the experimental results and fully predictive simulations. In addition, we will make microfluidic channels with obstacles mimicking the sediment the bacteria live in and study the swimming of magnetotactic bacteria through these channels. We hypothesize that weak magnetic fields will enhance the motion through the channel by providing directionality, while strong fields can results in trapping at obstacles and hinder the motion. We will test this idea, both experimentally and in simulations. Using the simulations, we will study the interplay of magnetic guidance, interactions with the obstacles, fluctuations, and active orientation changes in such environments and design interesting arrays of obstacles that will subsequently be tested experimentally. We aim at deducing and testing navigation strategies in complex environments and corresponding design constraints on the magnetotactic apparatus by comparing again different species as well as by an analysis of the population heterogeneity. The combination of our experimental approaches and theoretical description will lead to a comprehensive quantitative picture of magnetotactic motility in complex environments and more generally shed light on how directional control of motility can be balanced with directional flexibility to navigate complex environments in both microorganisms and microrobotics.
趋磁细菌在专门的细胞器(磁小体链)的帮助下在磁场中定向,磁小体链充当细胞内指南针。通过这种方式,它们的游动由鞭毛提供动力,由磁场引导;细菌可以被理解为自我推进的指南针。静磁细菌通常生活在水生环境的沉积物中,因此在以孔隙和障碍物为特征的环境中游动。在这个项目中,我们使用一个结合的理论和实验方法的定量表征趋磁运动在复杂的环境中。我们研究如何在这样的环境中实现定向运动,以及这些细菌如何平衡定向运动的鲁棒控制与定向灵活性,以通过这样的介质进行导航。我们将使用微流体捕获方法将单个细菌捕获在圆形限制中,并跟踪它们的运动以研究它们与限制壁的相互作用。基于这些观察,我们将使用理论模型的模拟来预测其他限制几何形状的行为以及不同强度和方向的磁场的存在。我们将描述不同种类的趋磁细菌,它们具有不同的趋磁器组织,表现出不同的趋磁行为。因此,我们将获得有关处理限制和阻碍定向运动的障碍物的不同策略的信息。我们将重新设计实验和建模,以获得实验结果的定量匹配和完全预测的模拟。此外,我们将制作具有障碍物的微流体通道,模仿细菌生活的沉积物,并研究趋磁细菌通过这些通道的游泳。我们假设弱磁场将通过提供方向性来增强通过通道的运动,而强磁场可能导致在障碍物处捕获并阻碍运动。我们将在实验和模拟中测试这个想法。使用模拟,我们将研究磁引导的相互作用,与障碍物的相互作用,波动,以及在这种环境中的主动方向变化,并设计有趣的障碍物阵列,随后进行实验测试。我们的目的是推导和测试在复杂的环境中的导航策略和相应的设计限制的趋磁装置,通过再次比较不同的物种,以及通过分析的人口异质性。我们的实验方法和理论描述的结合将导致在复杂的环境中的趋磁运动的全面的定量图片,更一般地阐明如何运动的方向控制可以与方向的灵活性平衡,以在微生物和microrobotics复杂的环境中导航。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Stefan Klumpp其他文献

Professor Dr. Stefan Klumpp的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Stefan Klumpp', 18)}}的其他基金

Statistische Physik der Transkription und ihrer Regulierung
转录及其调控的统计物理
  • 批准号:
    17321752
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似国自然基金

岸基信息支持下的海运船舶智能导航方法研究
  • 批准号:
    51679025
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
e-Navigation下陆基非理想环境船舶定位新方法研究
  • 批准号:
    61501079
  • 批准年份:
    2015
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
基于动态环境的船舶交通模拟方法研究
  • 批准号:
    51579025
  • 批准年份:
    2015
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目

相似海外基金

Implementing a patient navigation intervention across a health system to address treatment entry inequities
在整个卫生系统中实施患者导航干预,以解决治疗进入不平等问题
  • 批准号:
    10812628
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
VIS4ION-Thailand (Visually Impaired Smart Service System for Spatial Intelligence and Onboard Navigation) - Resub - 1
VIS4ION-泰国(视障空间智能和车载导航智能服务系统)- Resub - 1
  • 批准号:
    10903051
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Addressing Food Insecurity in Underserved Communities
解决服务不足社区的粮食不安全问题
  • 批准号:
    10781719
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Chemoattractant-specific T cell navigation of complex environments
复杂环境中化学引诱剂特异性 T 细胞导航
  • 批准号:
    10741224
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Reducing health disparities in foregut cancers by using modifiable barriers to predict risk for inequitable care: a novel implementation science-based approach
通过使用可修改的障碍来预测不公平护理的风险来减少前肠癌症的健康差异:一种基于科学的新颖实施方​​法
  • 批准号:
    10633373
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multisensory integration of auditory cues for navigation
用于导航的听觉线索的多感官整合
  • 批准号:
    10821886
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
HomeVENT (Home Values and Experiences Navigation Track)
HomeVENT(家庭价值观和体验导航轨道)
  • 批准号:
    10734147
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Characterizing the cognitive computations underlying spatial navigation
表征空间导航基础的认知计算
  • 批准号:
    10726662
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Continually Adaptive Machine Learning Platform for Personalized Biomedical Literature Curation and Exploration
用于个性化生物医学文献管理和探索的持续自适应机器学习平台
  • 批准号:
    10660315
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
EFRI BRAID: Resilient autonomous navigation inspired by the insect central complex and sensorimotor control motifs
EFRI BRAID:受昆虫中枢复合体和感觉运动控制图案启发的弹性自主导航
  • 批准号:
    2318081
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了