EFRI BRAID: Resilient autonomous navigation inspired by the insect central complex and sensorimotor control motifs

EFRI BRAID:受昆虫中枢复合体和感觉运动控制图案启发的弹性自主导航

基本信息

项目摘要

The last decade has seen a substantial increase in the frequency of natural disasters including wildfires, flooding, landslides, and outbreaks of agricultural pests and diseases. Mitigating the severity of disasters will require early warning and rapid responses, both of which could be aided by reliable and inexpensive autonomous robots. Unfortunately, modern robots have difficulty responding to new environments or damage to their bodies that might occur during disaster response. In contrast, living systems are remarkably adept at quickly adjusting their behavior to new situations thanks to redundancy and flexibility within the sensory and muscle control systems. Scientific discoveries in fruit flies have helped shed light on how these insects achieve resiliency in flight. The primary goal of this project is to translate this emerging knowledge from insect neuroscience to enable the development of more resilient robotic systems. This project builds on existing engineering theory to develop algorithms that are easy to understand and explain. As part of this project, unique research experiences will be offered to middle, high school, and undergraduate students to participate in both neuroscience and robotics research. The multidisciplinary research team will develop open-source course content to help bring neuroscience fluency to engineering students: translating neuroscience principles to engineering for enhanced resilience.A significant engineering challenge that has stymied the rollout of autonomous robotics is their lack of resilience in novel scenarios. In contrast, organisms are adept at quickly adjusting their behavior to new contexts thanks to redundancy and flexibility within their sensorimotor systems. Incorporating comparable functionality in engineered systems has proven challenging because we lack the basic knowledge for how to fuse information streams from different sensors and coordinate a large array of actuators without detailed models and constant calibrations—this sophisticated operation is achieved effortlessly by even simple animals. The overall goal of this proposal is to leverage recent neurobiological discoveries to develop new designs for autonomous robots that learn to adapt rapidly to changes in the environment or in their sensory and motor systems. The proposed approach draws inspiration from two themes found in insects: 1) the exploitation of a versatile, multisensory compass for navigation, and 2) the flexible implementation of stereotyped sensorimotor motifs in locomotion and other behaviors. The goals are to translate these concepts into engineering principles at an abstracted control-theoretic level, and then to implement and test them on functioning multirotor systems. This project is jointly funded by the Emerging Frontiers in Research and Innovation Program (BRAID) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去十年中,自然灾害的频率大幅增加,包括野火、洪水、山体滑坡以及农业病虫害的爆发。减轻灾害的严重程度需要早期预警和快速反应,这两者都可以得到可靠和廉价的自主机器人的帮助。不幸的是,现代机器人很难对新环境做出反应,或者在灾难应对过程中可能发生的身体损伤。相比之下,由于感觉和肌肉控制系统中的冗余和灵活性,生命系统非常善于快速调整其行为以适应新的情况。果蝇的科学发现有助于阐明这些昆虫如何在飞行中获得弹性。该项目的主要目标是将昆虫神经科学的新兴知识转化为能够开发更具弹性的机器人系统的知识。该项目建立在现有的工程理论基础上,开发易于理解和解释的算法。作为该项目的一部分,将为初中,高中和本科学生提供独特的研究经验,以参与神经科学和机器人研究。多学科研究团队将开发开源课程内容,以帮助工程专业的学生掌握神经科学的流利程度:将神经科学原理转化为工程学,以增强自主性。阻碍自主机器人推出的一个重大工程挑战是它们在新场景中缺乏弹性。相比之下,由于感觉运动系统的冗余性和灵活性,生物体善于迅速调整其行为以适应新的环境。在工程系统中实现类似的功能已经被证明是具有挑战性的,因为我们缺乏如何融合来自不同传感器的信息流的基本知识,并且在没有详细模型和不断校准的情况下协调大量执行器-即使是简单的动物也可以轻松实现这种复杂的操作。该提案的总体目标是利用最近的神经生物学发现来开发自主机器人的新设计,这些机器人学会快速适应环境或其感觉和运动系统的变化。所提出的方法从昆虫中发现的两个主题中汲取灵感:1)利用多功能,多感官的指南针进行导航,以及2)在运动和其他行为中灵活实施刻板的感觉运动基序。目标是将这些概念转化为抽象控制理论层面的工程原理,然后在多旋翼系统上实现和测试。该项目由新兴前沿研究与创新计划(BRAID)和激励竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Floris van Breugel其他文献

The long-distance flight behavior of Drosophila suggests a general model for wind-assisted dispersal in insects
果蝇的长距离飞行行为提出了昆虫风助传播的一般模型
  • DOI:
    10.1101/2020.06.10.145169
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Katherine J. Leitch;Francesca V Ponce;Floris van Breugel;M. Dickinson
  • 通讯作者:
    M. Dickinson
Monocular distance estimation from optic flow during active landing maneuvers
主动着陆操纵期间根据光流估计单眼距离
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Floris van Breugel;K. Morgansen;M. Dickinson
  • 通讯作者:
    M. Dickinson
Drosophila have distinct activity-gated pathways that mediate attraction and aversion to CO2
果蝇具有独特的活动门控途径,介导对二氧化碳的吸引和厌恶
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Floris van Breugel;A. Huda;M. Dickinson
  • 通讯作者:
    M. Dickinson
Flies catch wind of where smells come from
苍蝇能嗅到气味的来源。
  • DOI:
    10.1038/d41586-022-03561-3
  • 发表时间:
    2022-11-09
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Floris van Breugel;Bingni W. Brunton
  • 通讯作者:
    Bingni W. Brunton
Octopaminergic modulation of the visual flight speed regulator of Drosophila
果蝇视觉飞行速度调节器的八巴胺能调节
  • DOI:
    10.1242/jeb.098665
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Floris van Breugel;Marie P. Suver;M. Dickinson
  • 通讯作者:
    M. Dickinson

Floris van Breugel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Mobilizing brain health and dementia guidelines for practical information and a well trained workforce with cultural competencies - the BRAID Hub - Brain health Resources And Integrated Diversity Hub
动员大脑健康和痴呆症指南获取实用信息和训练有素、具有文化能力的劳动力 - BRAID 中心 - 大脑健康资源和综合多样性中心
  • 批准号:
    498289
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Operating Grants
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Brain-inspired Algorithms for Autonomous Robots (BAAR)
EFRI BRAID:自主机器人的类脑算法 (BAAR)
  • 批准号:
    2318065
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Efficient Learning of Spatiotemporal Regularities in Humans and Machines through Temporal Scaffolding
EFRI BRAID:通过时间支架有效学习人类和机器的时空规律
  • 批准号:
    2317706
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Fractional-order neuronal dynamics for next generation memcapacitive computing networks
EFRI BRAID:下一代记忆电容计算网络的分数阶神经元动力学
  • 批准号:
    2318139
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Combinatorics and Braid Varieties
组合学和编织品种
  • 批准号:
    2246877
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Emulating Cerebellar Temporally Coherent Signaling for Ultraefficient Emergent Prediction
EFRI BRAID:模拟小脑时间相干信号以实现超高效紧急预测
  • 批准号:
    2317974
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Neuroscience Inspired Visual Analytics
EFRI BRAID:神经科学启发的视觉分析
  • 批准号:
    2318101
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Scalable-Learning Neuromorphics
EFRI BRAID:可扩展学习神经形态
  • 批准号:
    2318152
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Braid groups via representation theory and machine learning
通过表示理论和机器学习编织辫子群
  • 批准号:
    DP230100654
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了