A study of stochastic analysis - synthesizing and integrating
随机分析研究——综合与整合
基本信息
- 批准号:14204010
- 负责人:
- 金额:$ 20.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1)As for stochastic oscillatory integrals (SOI in short), which are Fourie-Laplace transforms on the path space, studies on exact expression, asymptotic behavior, and application to nonlinear partial differential equation were made. In the case of phase function of quadratic Wiener functional, a Levy-Ito type exponential expression was established with the associated Hilbert-Schmidt operator. Moreover, in the case of phase function of stochastic line integral with polynomial coefficients, a concrete asymptotic behavior was shown. A door to the stationary phase method on the path space was opened by showing the concentration around stationary points of the asymptotic behavior in the case of Gaussian amplitude function. Finally, we found out a bijective relation between the tau function of the KdV hierarchy and SOI' s associated with Ornstein-Uhlenbeck processes, which is a completely new application of stochastic analysis to nonlinear PDE theory. (2)We made studies on concrete functionals on path spaces. We computed the distribution of the exponential functional obtained as time-integral of geometric Brownian motion, which plays a key role in studies of mathematical finance, diffusions in random environments, and Brownian motion on hyperbolic space, and established the recursive formula for its density function. Moreover, the absolute continuity of the distribution of the Wishart process was computed, and a probabilistic proof of Selberg trace formulas for Laplacian on forms on hyperbolic spaces was given. Furthermore, the trace formula on p-adic upper half plane was studied via semi-stable processes. (3)An easily-applicable criterion for heat kernel on general space to have a sub-Gaussian estimate was achieved. Diffusion processes on complexity were constructed, and a detailed estimation of associated heat kernel was established.
(1)对于路径空间上的傅里-拉普拉斯变换随机振荡积分(简称SOI),研究了其精确表达式、渐近性质及其在非线性偏微分方程中的应用。对于二次Wiener泛函的相函数,利用相关的Hilbert-Schmidt算子建立了Levy-Ito型指数表达式。此外,对于多项式系数随机线积分的相函数,给出了一个具体的渐近性质。通过展示高斯振幅函数的渐近特性在平稳点附近的集中,为路径空间上的平稳相位法打开了一扇大门。最后,我们发现了KdV层次的tau函数与与Ornstein-Uhlenbeck过程相关的SOI之间的双射关系,这是随机分析在非线性偏微分方程理论中的一个全新应用。(2)对路径空间的具体泛函进行了研究。本文计算了几何布朗运动的指数泛函的时间积分分布,并建立了其密度函数的递推公式。几何布朗运动在数学金融、随机环境中的扩散和双曲空间上的布朗运动的研究中起着关键作用。此外,还计算了Wishart过程分布的绝对连续性,给出了双曲空间上拉普拉斯形式的Selberg迹公式的一个概率证明。进一步,通过半稳定过程研究了p进上半平面上的示踪公式。(3)得到了一般空间上热核具有亚高斯估计的一个易于应用的判据。构造了基于复杂度的扩散过程,建立了关联热核的详细估计。
项目成果
期刊论文数量(133)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wegner estimates and localization for Gaussian random potentials
高斯随机势的韦格纳估计和定位
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:N.Ueki
- 通讯作者:N.Ueki
Some spectral and geometric properties for infinite graphs
无限图的一些谱和几何性质
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Yu.Higuchi;T.Shirai
- 通讯作者:T.Shirai
Finitary orbit equivalence of odometers
里程表的有限轨道当量
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:M.Keane;T.Hamachi
- 通讯作者:T.Hamachi
S.Taniguchi: "On Weiner functionals of order 2 associated with soliton solutions of the KdV equation"Jour.Funct.Anal.. (掲載予定). (2004)
S.Taniguchi:“关于与 KdV 方程的孤子解相关的 2 阶 Weiner 泛函”Jour.Funct.Anal..(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
On the Jacobi field approach to stochastic oscillatory integrals with quadratic phase functions
具有二次相位函数的随机振荡积分的雅可比场方法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:S.S.Adler;H.Hamagaki et al.;S.T
- 通讯作者:S.T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANIGUCHI Setsuo其他文献
Heat trace asymptotics on equiregular sub-Riemannian manifolds
等正则亚黎曼流形上的热迹渐近
- DOI:
10.2969/jmsj/82348234 - 发表时间:
2020 - 期刊:
- 影响因子:0.7
- 作者:
INAHAMA Yuzuru;TANIGUCHI Setsuo - 通讯作者:
TANIGUCHI Setsuo
Vocabulary Comparison in Works of American Prose: An Interdisciplinary Analysis Using Word2vec
美国散文作品中的词汇比较:使用 Word2vec 进行跨学科分析
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
UCHIDA Satoru;SHIMOJO Keiko;WATANABE Tomoaki;SAITO Shingo;TANIGUCHI Setsuo - 通讯作者:
TANIGUCHI Setsuo
TANIGUCHI Setsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANIGUCHI Setsuo', 18)}}的其他基金
A new development of stochastic differential geometry associated with degenerate differential operators
与简并微分算子相关的随机微分几何的新发展
- 批准号:
24540178 - 财政年份:2012
- 资助金额:
$ 20.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of stochastic calculus to the KdV equation and hierarchy
随机微积分在 KdV 方程和层次结构中的应用
- 批准号:
18340038 - 财政年份:2006
- 资助金额:
$ 20.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Study of asymptotic behaviors of stochastic oscillatory integrals
随机振荡积分渐近行为的研究
- 批准号:
11440051 - 财政年份:1999
- 资助金额:
$ 20.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on behaviors of solutions to hydrodynamical equations
流体动力学方程解的行为研究
- 批准号:
08454031 - 财政年份:1996
- 资助金额:
$ 20.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Study on hydrogen isotope effects in minerals by first-principles path integral molecular dynamics calculations and high-pressure experiments
第一性原理路径积分分子动力学计算和高压实验研究矿物中氢同位素效应
- 批准号:
23H01273 - 财政年份:2023
- 资助金额:
$ 20.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a new program combining path integral method and machine learning for the development of hydrogen storage materials
结合路径积分法和机器学习的储氢材料开发新程序的开发
- 批准号:
23K13827 - 财政年份:2023
- 资助金额:
$ 20.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Path Integral Monte Carlo Simulations of Molecular Dopants in Solid Parahydrogen
固体仲氢中分子掺杂剂的路径积分蒙特卡罗模拟
- 批准号:
558762-2021 - 财政年份:2022
- 资助金额:
$ 20.47万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Destabilization of wormhole formation by quantum effects: Formulation and illustration with path-integral method
量子效应对虫洞形成的不稳定:用路径积分方法进行公式化和说明
- 批准号:
22K03623 - 财政年份:2022
- 资助金额:
$ 20.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Path Integral Monte Carlo Simulations of Molecular Dopants in Solid Parahydrogen
固体仲氢中分子掺杂剂的路径积分蒙特卡罗模拟
- 批准号:
558762-2021 - 财政年份:2021
- 资助金额:
$ 20.47万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Path Integral Quantum Spin Dynamics
路径积分量子自旋动力学
- 批准号:
EP/V037935/1 - 财政年份:2021
- 资助金额:
$ 20.47万 - 项目类别:
Research Grant
EAGER: QAC-QSA: A HYBRID QUANTUM-CLASSICAL PATH-INTEGRAL METHOD FOR CHEMICAL DYNAMICS
EAGER:QAC-QSA:化学动力学混合量子经典路径积分方法
- 批准号:
2038005 - 财政年份:2020
- 资助金额:
$ 20.47万 - 项目类别:
Standard Grant
Real-time path integral methodology for condensed-phase quantum dynamics
凝聚相量子动力学的实时路径积分方法
- 批准号:
1955302 - 财政年份:2020
- 资助金额:
$ 20.47万 - 项目类别:
Continuing Grant
Stochastic Path Integral Formalism and Applications to Coherent Energy Transfer
随机路径积分形式及其在相干能量传输中的应用
- 批准号:
1800301 - 财政年份:2018
- 资助金额:
$ 20.47万 - 项目类别:
Standard Grant
Influence functional path integral approaches: From chemical dynamics to thermodynamics
影响功能路径积分方法:从化学动力学到热力学
- 批准号:
504301-2017 - 财政年份:2018
- 资助金额:
$ 20.47万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




