Studies on behaviors of solutions to hydrodynamical equations
流体动力学方程解的行为研究
基本信息
- 批准号:08454031
- 负责人:
- 金额:$ 1.98万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) As for solutions to Navier-Stokes equations, which describe motions of incompressible fluids in unbounded domains, decays at infinity of stationary solutions and time-decays of non-stationary measured in several LP-like norms were studied, and an influence of non- lineality of the equations on the decay was found out. (2) Sufficient conditions for classical and Sobolev type global solutions to Burgers-Helmholtz system were established, and asymptotic behavior of the solutions were obtained. The existence of traveling waves and theire asymptotic stability were seen. (3) A mathematical definition of entropy functions for compressible Euler-Helmholtz system was established. (4) The asymptotic stability of steady flows in infinite layers of viscous incompressible fluids in critical cases of stability has been verified. (5) For the initial value problems associated with Korteweg-de Vires equations, an analytic smoothing effect was found out. (6) A class where one can handle formal asymptotic expansions of solutions to quasilinear positive symmetric systems of hyperbolic equations was introduced, and its basic properties were studied. (7) A new complexification of an abstract Wiener space was proposed. A complex change of variable based on the complexification was established, and appled to study asymptotic behaviors of stochastic oscillatry integrals (methods of stationary phase, saddle point methods, and so on).
(1)对于描述无界区域内不可压缩流体运动的Navier-Stokes方程的解,研究了定常解在无穷远处的衰减和非定常解在几种LP范数下的时间衰减,发现了方程的非线性对衰减的影响。(2)建立了Burgers-Helmholtz方程组古典解和Sobolev型整体解存在的充分条件,并得到了解的渐近性态.证明了行波的存在性和渐近稳定性。(3)建立了可压缩Euler-Helmholtz系统熵函数的数学定义。(4)本文证明了粘性不可压缩流体无限层定常流动在临界稳定性情形下的渐近稳定性。(5)对于Korteweg-de Vires方程的初值问题,发现了解析光滑效应. (6)引入了一类可以处理拟线性正对称双曲型方程组解的形式渐近展开式,并研究了它的基本性质。(7)提出了一种新的抽象Wiener空间的复化方法。建立了基于复化的变量复变方法,并将其应用于研究随机积分的渐近性态(稳定相法、鞍点法等)。
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Miyakawa: "Hardy spaces of solenoidal vector fields,with applications to the Navier-Stokes equations," Kyushu Journal of Mathematics. 50. 1-64 (1996)
T.Miyakawa:“螺线管矢量场的哈迪空间及其在纳维-斯托克斯方程中的应用”,《九州数学杂志》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Hattori,S.Kawashima: "Nonlinear stability of travelling wave solutions for viscoelastic materials with fading memory" Jour.Differential Equations. 127. 174-196 (1996)
H.Hattori,S.Kawashima:“具有褪色记忆的粘弹性材料的行波解的非线性稳定性”Jour.Differential Equations。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
W.von Wahl,Y.Kagei: "Asymptotic stability of steady flows in infinite layers of viscous incompressible fluids in critical cases of stability" Indiana Univ.Math.Jour.印刷中.
W. von Wahl,Y. Kagei:“在稳定性临界情况下无限层粘性不可压缩流体中稳定流动的渐近稳定性”印第安纳大学数学期刊出版中。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Sugita,S.Taniguchi: "Oscillatory integrals with quadratic phase function on a real abstract Wiener space" Journal of Functional Analysis. 155. 229-262 (1998)
H.Sugita,S.Taniguchi:“真实抽象维纳空间上二次相函数的振荡积分”泛函分析杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Miyakawa: "Application of Hardy space techniques to the time-decay problem for incompressible Navier-Stokes flows in R^n" Funkcialaj Ekvacioj. 41. 383-434 (1998)
T.Miyakawa:“Hardy 空间技术在 R^n 中不可压缩纳维-斯托克斯流的时间衰减问题中的应用”Funkcialaj Ekvacioj。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANIGUCHI Setsuo其他文献
Heat trace asymptotics on equiregular sub-Riemannian manifolds
等正则亚黎曼流形上的热迹渐近
- DOI:
10.2969/jmsj/82348234 - 发表时间:
2020 - 期刊:
- 影响因子:0.7
- 作者:
INAHAMA Yuzuru;TANIGUCHI Setsuo - 通讯作者:
TANIGUCHI Setsuo
Vocabulary Comparison in Works of American Prose: An Interdisciplinary Analysis Using Word2vec
美国散文作品中的词汇比较:使用 Word2vec 进行跨学科分析
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
UCHIDA Satoru;SHIMOJO Keiko;WATANABE Tomoaki;SAITO Shingo;TANIGUCHI Setsuo - 通讯作者:
TANIGUCHI Setsuo
TANIGUCHI Setsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANIGUCHI Setsuo', 18)}}的其他基金
A new development of stochastic differential geometry associated with degenerate differential operators
与简并微分算子相关的随机微分几何的新发展
- 批准号:
24540178 - 财政年份:2012
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of stochastic calculus to the KdV equation and hierarchy
随机微积分在 KdV 方程和层次结构中的应用
- 批准号:
18340038 - 财政年份:2006
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A study of stochastic analysis - synthesizing and integrating
随机分析研究——综合与整合
- 批准号:
14204010 - 财政年份:2002
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
A Study of asymptotic behaviors of stochastic oscillatory integrals
随机振荡积分渐近行为的研究
- 批准号:
11440051 - 财政年份:1999
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Computer-assisted solution verification for the Navier-Stokes equation with large Reynolds numbers
大雷诺数纳维-斯托克斯方程的计算机辅助解验证
- 批准号:
20KK0306 - 财政年份:2021
- 资助金额:
$ 1.98万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Acceleration of a Navier-Stokes Equation Solver Using GPU Parallelization and Multigrid
使用 GPU 并行化和多重网格加速纳维-斯托克斯方程求解器
- 批准号:
539961-2019 - 财政年份:2019
- 资助金额:
$ 1.98万 - 项目类别:
University Undergraduate Student Research Awards
Computer-assisted proof for stationary solution existence of Navier-Stokes equation on 3D domain
3D域上Navier-Stokes方程平稳解存在性的计算机辅助证明
- 批准号:
18K03411 - 财政年份:2018
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Software development of advanced methods for the incompressible Navier-Stokes equation
不可压缩纳维-斯托克斯方程先进方法的软件开发
- 批准号:
398161-2010 - 财政年份:2010
- 资助金额:
$ 1.98万 - 项目类别:
University Undergraduate Student Research Awards
A study of how indicators for 2-D turbulence depend on the driving force in the Navier-Stokes equation
研究二维湍流指标如何取决于纳维-斯托克斯方程中的驱动力
- 批准号:
0511533 - 财政年份:2005
- 资助金额:
$ 1.98万 - 项目类别:
Standard Grant
Research on the Navier-Stokes equation and the related topics on the nonlinear differential equations
纳维-斯托克斯方程及非线性微分方程相关课题的研究
- 批准号:
15540215 - 财政年份:2003
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solitary-wave solutions of the Navier-Stokes equation
纳维-斯托克斯方程的孤立波解
- 批准号:
02805010 - 财政年份:1990
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Mathematical Sciences: Free Boundary Problems, Fully Nonlinear Equations, Nonlinear Parabolic Equations, and the Navier-Stokes Equation
数学科学:自由边界问题、完全非线性方程、非线性抛物型方程和纳维-斯托克斯方程
- 批准号:
8804567 - 财政年份:1988
- 资助金额:
$ 1.98万 - 项目类别:
Continuing Grant
Mathematical Sciences: Numerical Solution of Stiff Ordinary Differential Equations and the Navier-Stokes Equation
数学科学:刚性常微分方程和纳维-斯托克斯方程的数值解
- 批准号:
8719952 - 财政年份:1988
- 资助金额:
$ 1.98万 - 项目类别:
Continuing Grant














{{item.name}}会员




