Dualities for branching-coalescing processes in population genetics
群体遗传学中分支合并过程的二元性
基本信息
- 批准号:449823447
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:WBP Fellowship
- 财政年份:2020
- 资助国家:德国
- 起止时间:2019-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In mathematical population genetics, two approaches are used to understand the effect of evolutionary forces on a population. On the one hand, one uses stochastic processes describing the allele frequencies forward in time. On the other hand, one considers branching-coalescing processes that arise from genealogical considerations. Ideally, the connection between the two approaches is formalised via a duality relation between two stochastic processes. Together with Prof. Steven Evans, we will develop systematic methods to construct a useful branching-coalescing dual process for a given type-frequency process. In particular, we aim at identifying a class of stochastic processes that can be analysed via ancestral considerations. The systematic construction should considerably widen the scope of duality methods and make them applicable to a wider class of models.Wright-Fisher processes are prominent examples of the classical type-frequency processes. In some special cases, the transition densities of the Wright-Fisher diffusion admits a representation in terms of a branching-coalescing dual process. These representations allow to efficiently simulate the diffusion process; this is important for the inference of mutation and selection parameters from population genetical data. The density representations are derived from a moment duality, which is known only in specific examples. We will construct our dual processes such that they can be used for the representation of the transition densities in a way that is independent of the existence of a moment duality.
在数学种群遗传学中,有两种方法被用来理解进化力量对种群的影响。一方面,我们使用随机过程来描述等位基因的频率。另一方面,人们考虑从宗谱考虑中产生的分支合并过程。理想情况下,两种方法之间的联系是通过两个随机过程之间的对偶关系形式化的。与Steven Evans教授一起,我们将开发系统的方法来构建一个有用的分支-凝聚对偶过程的给定类型-频率过程。特别地,我们的目标是识别一类可以通过祖先考虑来分析的随机过程。系统的构建应大大拓宽对偶方法的范围,使其适用于更广泛的模型类别。Wright-Fisher过程是典型的类型-频率过程。在某些特殊情况下,Wright-Fisher扩散的跃迁密度可以用支结对偶过程来表示。这些表示允许有效地模拟扩散过程;这对于从群体遗传数据中推断突变和选择参数具有重要意义。密度表示是从力矩对偶性推导而来的,这只有在特定的例子中才知道。我们将构造我们的对偶过程,使它们能够以一种独立于矩对偶存在的方式来表示跃迁密度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Sebastian Hummel其他文献
Dr. Sebastian Hummel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
约化群酉表示的branching law及其应用
- 批准号:10971103
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Accurate Determination of Branching Fractions in Ammonia Combustion
氨燃烧中支化分数的准确测定
- 批准号:
2329341 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
The Role and Branching Dynamics of Sympathetic Nerves in Ovarian Folliculogenesis
交感神经在卵巢卵泡发生中的作用和分支动态
- 批准号:
10607058 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Insights into Degradable Branched Step-growth Polymers using Transfer-dominated Branching Radical Telomerisation
使用转移主导的支化自由基调聚对可降解支化逐步增长聚合物的见解
- 批准号:
EP/X010864/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Synthetic morphogenesis to recapitulate multicellular airway branching patterns
合成形态发生来概括多细胞气道分支模式
- 批准号:
10606897 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Branching Program Lower Bounds
分支程序下界
- 批准号:
RGPIN-2019-06288 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Analysis of asymptotic behaviors of branching Brownian motion within frontier
边界内分支布朗运动的渐近行为分析
- 批准号:
22K03427 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Some contributions to the study of branching structures and trees
对分支结构和树木研究的一些贡献
- 批准号:
2747915 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Establishment of a prediction model for aneurysm development by mathematical vascular branching pattern classification and vascular travel standardisation.
通过数学血管分支模式分类和血管行程标准化建立动脉瘤发展的预测模型。
- 批准号:
22K07763 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Repetitions in Words: Branching Out from Dejean's theorem
文字中的重复:德让定理的分支
- 批准号:
RGPIN-2021-04084 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual