Various aspects of infinite groups of transformations acting on manifolds
作用于流形上的无限变换群的各个方面
基本信息
- 批准号:16204004
- 负责人:
- 金额:$ 23.13万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Transformation groups acting on manifolds have been intensively investigated since the establishment of the notion of manifolds. In this research, we look at infinite groups of transformations, that is, infinite groups acting smoothly on manifolds. In this subject, there are still many unsolved problems. The aim of our research was to study the research techniques on infinite groups of transformations, to develop new techniques and to apply it to solve the problems. More specifically, it was stated as follows (1) On the action of finitely presented infinite groups such as the fundamental groups of 2 or 3 dimensional manifolds, we clarify the relationship between the nature of the actions and the quantities coming from geometric group theory. We clarify the relation between the action of groups and the bounded cohomology of groups. (2) We clarify the topology of the classifying spaces of various infinite transformation groups and the invariants for infinite transformation groups. In par … More ticular, we look at the topology of the classifying space for the group of symplectomorphisms or contactomorphisms. (3) We study the dynamics of infinite transformation groups, define invariants associated with invariant sets for the transformation groups and study the properties of the invariants. We also study the ergodic properties of transformation groups. (4) We classify several important infinite group actions on manifolds. In particular, we look at the rigidity of the actions on manifolds of discrete subgroups of Lie groups. We also investigate the invariants of complex analytic actions of mapping class groups of surfaces. (5) We look at the relationship among the study on the geometry of infinite groups, on classifying spaces of infinite groups, on dynamics of infinite transformation groups, on rigidity of actions, … We clarify this relation for the bundle transformation groups of fiber bundles, the area preserving diffeomorphism groups of surfaces, the complex analytic transformation groupoid of complex manifolds.To perform these researches, we maintained the network among the researchers to promote the interaction and the collaborations. We planned timely meetings, sent researchers to other institute, gave presentations in the international meetings, asked being foreign specialists to review our research. With the collaboration of researchers, we performed the research from a global point of view.These researches were done successfully with their own results in the line listed above. In particular, our high research level was shown by 5 special invited lectures in -the meeting of the Mathematical Society of Japan (including 2 Geometry Prize of the Mathematical Society of Japan awards).By these research activities, the direction of new development for the next project became clear. Less
自流形的概念提出以来,作用于流形上的变换群一直是人们研究的热点。在这项研究中,我们研究了变换的无限群,即在流形上光滑作用的无限群。在这一课题中,还有许多问题没有解决。我们研究的目的是研究无限变换群的研究方法,发展新的方法并应用于解决问题。(1)对于2维或3维流形的基本群等可表示的无限群的作用,阐明了作用的性质与几何群论中的量之间的关系。阐明了群的作用与群的有界上同调之间的关系。(2)阐明了各种无限变换群的分类空间的拓扑结构和无限变换群的不变量。在平价 ...更多信息 在此,我们来看看辛同构或接触同构群的分类空间的拓扑。(3)我们研究无限变换群的动力学,定义与变换群的不变集相关的不变量,并研究不变量的性质。我们还研究了变换群的遍历性。(4)对流形上几个重要的无穷群作用进行了分类。特别是,我们期待在李群的离散子群流形上的行动的刚性。我们还研究了曲面映射类群的复解析作用的不变量。(5)我们研究了无穷群的几何学、无穷群的分类空间、无穷变换群的动力学、作用的刚性.我们保持研究人员之间的网络,以促进互动和合作。我们计划及时的会议,派遣研究人员到其他研究所,在国际会议上发表演讲,请外国专家审查我们的研究。在研究人员的合作下,我们从全球的角度进行了研究。这些研究都取得了成功,并在上面列出的路线中取得了自己的成果。特别是在日本数学学会会议上的5次特邀演讲(包括2次日本数学学会的几何奖)显示了我们的高研究水平。通过这些研究活动,下一个项目的新发展方向变得清晰。少
项目成果
期刊论文数量(53)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Locally connected exceptional minimal sets of surface homeomorphisms
局部连接的异常最小表面同胚集
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T.Kobayashi;G.Hector;T.Shibata;T.Shibata;T.Shibata;T.Shibata;A.Bi's
- 通讯作者:A.Bi's
Kleinian groups which are limits of geometrically finite group
克莱因群是几何有限群的极限
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:FUJIWARA;Koji;Papasogla;Y.Imayoshi;Takashi TSUBOI;Ken' ichi Ohshika
- 通讯作者:Ken' ichi Ohshika
Parameter rigidity of locally free Lie group actions and leafwise cohomology
局部自由李群作用和叶向上同调的参数刚性
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:小林敬;八田ゆかり;安啓一;程島奈緒;荒井隆行;進藤美津子;S. Matsumoto
- 通讯作者:S. Matsumoto
Characteristic classes of foliated surface bundles with area-preserving holonomy
具有保面积完整的叶状表面束的特征类别
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:D. Kotschick;S. Morita
- 通讯作者:S. Morita
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TSUBOI Takashi其他文献
TSUBOI Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TSUBOI Takashi', 18)}}的其他基金
Regulation of incretin secretion by microbiota metabolites
微生物代谢物调节肠促胰素分泌
- 批准号:
20H04121 - 财政年份:2020
- 资助金额:
$ 23.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Molecular mechanisms of gastrointestinal hormone secretion by intestinal bacterial metabolites
肠道细菌代谢产物分泌胃肠激素的分子机制
- 批准号:
17K08529 - 财政年份:2017
- 资助金额:
$ 23.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of ghrelin secretion from endocrine cells
内分泌细胞分泌生长素释放肽的分子机制
- 批准号:
26460289 - 财政年份:2014
- 资助金额:
$ 23.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanisms of gliotransmitter release from astrocytes by imaging analysis
通过成像分析星形胶质细胞释放胶质递质的机制
- 批准号:
24790207 - 财政年份:2012
- 资助金额:
$ 23.13万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Actions of infinite simple groups
无限简单群的行动
- 批准号:
24654011 - 财政年份:2012
- 资助金额:
$ 23.13万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study on the molecular mechanism of hormone secretion
激素分泌的分子机制研究
- 批准号:
21790197 - 财政年份:2009
- 资助金额:
$ 23.13万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Geometric study on infinite simple groups
无限简单群的几何研究
- 批准号:
21654009 - 财政年份:2009
- 资助金额:
$ 23.13万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Groups of diffeomorphisms of manifolds
流形微分同胚群
- 批准号:
20244003 - 财政年份:2008
- 资助金额:
$ 23.13万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Molecular mechanisms of hormone release revealed by live cell imaging analysis
活细胞成像分析揭示激素释放的分子机制
- 批准号:
18689008 - 财政年份:2006
- 资助金额:
$ 23.13万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Various Aspects of Topology
拓扑的各个方面
- 批准号:
12304003 - 财政年份:2000
- 资助金额:
$ 23.13万 - 项目类别:
Grant-in-Aid for Scientific Research (A)














{{item.name}}会员




