Various Aspects of Topology

拓扑的各个方面

基本信息

  • 批准号:
    12304003
  • 负责人:
  • 金额:
    $ 31.17万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2002
  • 项目状态:
    已结题

项目摘要

Topology is the mathematics to study the position and the shape. The development of topology in the last decade was promoted by the interaction between the branches of topology as well as that between differential geometry, algebra, analysis, mathematical physics and topology. In this research, we wish to promote the development much more. We did the researches in the following fields : classifying theory of singularities of mappings and algebraic varieties, various group actions on manifolds and simplicial complexes, the action of the mapping class groups of the surfaces on their Teichmuller spaces, the dynamical study of complex analytic maps, the dynamical study of vector fields on manifolds and foliations, the classifying theory of hyperbolic 3 dimensional manifolds and hyperbolic spaces with singularities, the differentiable structures and symplectic structures on 4 dimensional manifolds, the conformal field theory and invariants of dimensional manifolds, the topology of the moduli spaces of connections of various principal bundles, the Poisson manifolds and contact manifolds, equivariant generalized (co)homology theories and homotopy theories, invariants of knots and links and their classification, general topology theory for wild spaces. These researches were done successfully with their own results. In order to promote the interaction between these researches we held "Topology Symposium" each year as well as many conferences on the above research fields. These are done as Topology Projects in the collaboration with researchers in topology in Japan. In particular, the series of the meetings "Encounter with Mathematics" were held in order to promote the interaction with researchers in other fields as well as graduate students. By these research activities, the direction of new development for the next project became clear.
拓扑学是研究物体的位置和形状的数学。拓扑学各分支之间的相互作用,以及微分几何、代数、分析、数学物理与拓扑学之间的相互作用,促进了拓扑学在近十年的发展。希望通过本课题的研究,进一步推动我国生物医学的发展。我们在以下领域进行了研究:映射和代数簇的奇点分类理论,流形和单纯复形上的各种群作用,曲面的映射类群在其Teichmuller空间上的作用,复解析映射的动力学研究,流形和叶理上向量场的动力学研究,三维双曲流形和双曲空间的奇异性分类理论,四维流形上的可微结构和辛结构,共形场论和维流形的不变量,各种主丛联络的模空间的拓扑,Poisson流形与切触流形,等变广义(上)同调理论与同伦理论,纽结与链环的不变量及其分类,Wild空间的一般拓扑理论。这些研究都取得了成功,并取得了自己的成果。为了促进这些研究之间的互动,我们每年举办“拓扑研讨会”以及上述研究领域的许多会议。这些都是与日本拓扑学研究人员合作完成的拓扑学项目。特别是,举行了一系列会议“与数学相遇”,以促进与其他领域的研究人员以及研究生的互动。通过这些研究活动,下一个项目的新发展方向变得清晰。

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shigenori Matsumoto, Hiromichi Nakayama: "On the Ruelle invariants for deffeomorphisms of the two torus"Ergod.Th.Dyanam.Sys.. 22. 1263-1267 (2002)
Shigenori Matsumoto、Hiromichi Nakayama:“论两个环面 defeomorphisms 的 Ruelle 不变量”Ergod.Th.Dyanam.Sys.. 22. 1263-1267 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Morimoto,T.Sumi and M.Yanagihara: "Finite groups possessing gap modules,"Geometry and Topology : Aarhus, Contemp.Math.. 258. 329-342 (2000)
M.Morimoto、T.Sumi 和 M.Yanagihara:“拥有间隙模的有限群”,几何与拓扑:奥尔胡斯,Contemp.Math.. 258. 329-342 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Masaharu Morimoto: "The Burnside ring revisited"Current Trends in Transformation Groups, K-Monographs in Mathematics 7. 7. 129-145 (2002)
Masaharu Morimoto:“重温伯恩赛德环”当前转型群趋势,K-数学专着 7. 7. 129-145 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Toshitake Kohno: "Vassiliev invariants of braids and iterated integrals"Advanced Studuies in Pure Math.. 27. 157-168 (2000)
Toshitake Kohno:“辫子的 Vassiliev 不变量和迭代积分”Advanced Studuies in Pure Math.. 27. 157-168 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Akio Kawauchi: "On linking signature invariants of surface-knots"J. Knot Theory Ramifications. 11. 1043-1062 (2002)
Akio Kawauchi:“关于连接表面结的签名不变量”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TSUBOI Takashi其他文献

TSUBOI Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TSUBOI Takashi', 18)}}的其他基金

Regulation of incretin secretion by microbiota metabolites
微生物代谢物调节肠促胰素分泌
  • 批准号:
    20H04121
  • 财政年份:
    2020
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Molecular mechanisms of gastrointestinal hormone secretion by intestinal bacterial metabolites
肠道细菌代谢产物分泌胃肠激素的分子机制
  • 批准号:
    17K08529
  • 财政年份:
    2017
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of ghrelin secretion from endocrine cells
内分泌细胞分泌生长素释放肽的分子机制
  • 批准号:
    26460289
  • 财政年份:
    2014
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanisms of gliotransmitter release from astrocytes by imaging analysis
通过成像分析星形胶质细胞释放胶质递质的机制
  • 批准号:
    24790207
  • 财政年份:
    2012
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Actions of infinite simple groups
无限简单群的行动
  • 批准号:
    24654011
  • 财政年份:
    2012
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Study on the molecular mechanism of hormone secretion
激素分泌的分子机制研究
  • 批准号:
    21790197
  • 财政年份:
    2009
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Geometric study on infinite simple groups
无限简单群的几何研究
  • 批准号:
    21654009
  • 财政年份:
    2009
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Groups of diffeomorphisms of manifolds
流形微分同胚群
  • 批准号:
    20244003
  • 财政年份:
    2008
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Molecular mechanisms of hormone release revealed by live cell imaging analysis
活细胞成像分析揭示激素释放的分子机制
  • 批准号:
    18689008
  • 财政年份:
    2006
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Various aspects of infinite groups of transformations acting on manifolds
作用于流形上的无限变换群的各个方面
  • 批准号:
    16204004
  • 财政年份:
    2004
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似海外基金

Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
  • 批准号:
    2350309
  • 财政年份:
    2024
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Standard Grant
Complementary study on dynamical systems and foliations using methods of partially ordered set and general topology
使用偏序集和一般拓扑方法对动力系统和叶状结构进行补充研究
  • 批准号:
    20K03583
  • 财政年份:
    2020
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Taut Foliations and Contact Topology
合作研究:张紧的叶状结构和接触拓扑
  • 批准号:
    1612475
  • 财政年份:
    2016
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Continuing Grant
Collaborative Research: Taut foliations and contact topology
合作研究:拉紧的叶状结构和接触拓扑
  • 批准号:
    1612036
  • 财政年份:
    2016
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Continuing Grant
A research on Thurston's inequality for foliations and contact topology
叶状结构和接触拓扑瑟斯顿不等式的研究
  • 批准号:
    23540106
  • 财政年份:
    2011
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Foliations, flows, and 3-manifolds: Topology and geometry
叶状结构、流动和三流形:拓扑和几何
  • 批准号:
    0296139
  • 财政年份:
    2001
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Continuing Grant
Foliations, flows, and 3-manifolds: Topology and geometry
叶状结构、流动和三流形:拓扑和几何
  • 批准号:
    0071683
  • 财政年份:
    2000
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Asymptotic Topology, Analysis and Dynamics of Spaces and Foliations
数学科学:空间和叶状结构的渐近拓扑、分析和动力学
  • 批准号:
    9704768
  • 财政年份:
    1997
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometry and Topology of Foliations and Flows in 3-Manifolds
数学科学:3-流形中叶状结构和流动的几何和拓扑
  • 批准号:
    9612317
  • 财政年份:
    1996
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Differential Topology and Dynamics ofGroup Actions and Foliations
数学科学:微分拓扑以及群作用和叶状结构的动力学
  • 批准号:
    9401688
  • 财政年份:
    1994
  • 资助金额:
    $ 31.17万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了