Heat transfer augmentation with nano-and micro-scale porous layer structure formed on the surface

表面形成纳米和微米级多孔层结构增强传热

基本信息

  • 批准号:
    16206022
  • 负责人:
  • 金额:
    $ 23.63万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

This study is to investigate the mechanism of high heat transfer augmentation with nano/micro porous layer structure formed on the plate surface. We confirmed that the net amount of input energy through this porous surface was 20-30% increase compared to the bare plate without any porous layer by using the fundamental equipment. We examined the plate thickness effect on the input energy and then obtained the results showed all the same: no effect of the plate thickness on the heat transfer augmentation. This means that the thermal resistance is predominant at the nano/micro-porous layer. However, since the thickness of the nano/micro-porous layer is about 100 micron meter, in general it can neglect as a thermal resistance. Moreover, since this thickness can also be so small compared to the laminar boundary layer thickness, it can also neglect as a flow agitator (i.e., turbulence promoter). On the other hand, from the SEM image, this porous layer consisted of many particles and contacted with each other. This means that this porous layer can be considered as an adiabatic medium. Moreover, the etching layer between porous layer and the metal plate (i.e., heat transfer surface) shows very tight binding and this layer thickness is around minimum 5~10 nm. This thickness is too thin to act as an adiabatic layer. Therefore, the heat flow can easily pass through this thin part of the etching layer. Eventually, the heat flow can increase at that thin part. The water inside the porous layer could heat up by this increased heat flow and the temperature immediately increases and finally reaches to the wall temperature. This means that this nano/micro porous layer structure filling with water might act as a fluid-like wall. This might be a possible mechanism of this heat transfer augmentation by the nano/micro porous layer structure formed on the surface.
本研究旨在探讨在平板表面形成纳米/微孔层结构的高换热机理。通过使用基础设备,我们确认通过多孔表面的净输入能量比没有任何多孔层的裸板增加了20-30%。我们考察了板厚对输入能量的影响,得到的结果都是一样的:板厚对传热增强没有影响。这意味着热阻在纳米/微孔层上占主导地位。然而,由于纳米/微孔层的厚度约为100微米,一般可以忽略其作为热阻。此外,由于该厚度与层流边界层厚度相比也可以很小,因此也可以忽略其作为流动搅拌器(即湍流促进器)的作用。另一方面,从SEM图像来看,该多孔层由许多颗粒组成,并且相互接触。这意味着这个多孔层可以看作是绝热介质。多孔层与金属板(即传热表面)之间的蚀刻层结合非常紧密,该层厚度最小在5~10 nm左右。这个厚度太薄,不能作为绝热层。因此,热流可以很容易地通过蚀刻层的薄部分。最终,热流会在那个薄的部分增加。由于热流的增加,多孔层内的水被加热,温度立即升高,最终达到壁温。这意味着这种充满水的纳米/微孔层结构可能起到类似流体壁的作用。这可能是表面形成纳米/微孔层结构增强传热的一种可能机制。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ナノスケールの構造物間隔が固液界面近傍の分子挙動に与える影響
纳米级结构间距对固液界面附近分子行为的影响
A Study on Effects of Surface Structure Clearance in Nanometer Scale on Molecular Behavior in the Vicinity of a Liquid-Solid Interface
纳米尺度表面结构间隙对液固界面附近分子行为的影响研究
ナノスケールの構造物が界面エネルギー伝達へ与える影響(分子動力学解析)
纳米级结构对界面能量转移的影响(分子动力学分析)
Molecular Dynamics Study on Effects of Nanoscale Structures on Energy Transfer between Fluid Molecules and a Surface
纳米结构对流体分子与表面能量传递影响的分子动力学研究
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Tsuji;T. Mizuno;T. Mashiko;and M. Sano;A. Iwasaki;M.Shibahara
  • 通讯作者:
    M.Shibahara
Ultrahigh Heat Transfer Enhancement by Nano-and Micro-scale Porous Layer formed on Surface
通过表面形成的纳米和微米级多孔层增强超高传热
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KUNUGI Tomoaki其他文献

KUNUGI Tomoaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Development of transparent scintillators via controlling nano- and micro-scale structure
通过控制纳米和微米结构开发透明闪烁体
  • 批准号:
    26249147
  • 财政年份:
    2014
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Properties and interactions of polymer surfaces and thin films at the molecular, nano and micro-scale
分子、纳米和微米尺度上聚合物表面和薄膜的性质和相互作用
  • 批准号:
    386023-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Discovery Grants Program - Individual
Properties and interactions of polymer surfaces and thin films at the molecular, nano and micro-scale
分子、纳米和微米尺度上聚合物表面和薄膜的性质和相互作用
  • 批准号:
    386023-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Discovery Grants Program - Individual
Properties and interactions of polymer surfaces and thin films at the molecular, nano and micro-scale
分子、纳米和微米尺度上聚合物表面和薄膜的性质和相互作用
  • 批准号:
    386023-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Discovery Grants Program - Individual
Properties and interactions of polymer surfaces and thin films at the molecular, nano and micro-scale
分子、纳米和微米尺度上聚合物表面和薄膜的性质和相互作用
  • 批准号:
    386023-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Discovery Grants Program - Individual
Nano- and micro-scale engineering of MoS2-based catalyst for conversion of syngas to ethanol
用于合成气转化为乙醇的 MoS2 基催化剂的纳米和微米工程
  • 批准号:
    LP0991958
  • 财政年份:
    2010
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Linkage Projects
Properties and interactions of polymer surfaces and thin films at the molecular, nano and micro-scale
分子、纳米和微米尺度上聚合物表面和薄膜的性质和相互作用
  • 批准号:
    386023-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Discovery Grants Program - Individual
Establishment of Evaluation Method of Nano and Micro-scale Surface Strength for Thin Coatings and its Application to Nano-scale Surface Processing
薄涂层纳米、微米级表面强度评价方法的建立及其在纳米级表面加工中的应用
  • 批准号:
    21360073
  • 财政年份:
    2009
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Chemical Vapor Deposition Fabrication of Nano- and Micro-scale Biomimetic Surfaces
纳米和微米级仿生表面的化学气相沉积制造
  • 批准号:
    0727984
  • 财政年份:
    2007
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Standard Grant
Nano- and Micro-scale Integration of Glass-on-Semiconductor for Photonic Components Engineering
用于光子元件工程的半导体玻璃的纳米和微米级集成
  • 批准号:
    EP/D04622X/1
  • 财政年份:
    2006
  • 资助金额:
    $ 23.63万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了