Homochiral Magnetic Structures in Deposited Clusters

沉积团簇中的同手性磁性结构

基本信息

项目摘要

The unique homochirality of biopolymers and the parity violation of the electroweak interaction are two fascinating examples where the laws of nature are different for an image and for a mirror image. We believe this is also true for the magnetic structure in metal clusters deposited on surfaces. We propose the investigation of the existence and the strength of the Dzyaloshinskii- Moriya (DM) interaction of preferably ferromagnetic clusters, e.g. Fe, Co, Ni, Ru, and Os, deposited on substrates with large nuclear numbers, e.g. W, Ir, Pt, Pb, or Bi. We argue that during the past 20 years of ab initio calculations on the magnetism of small magnetic objects deposited on substrates, magnetism has only been explained on the basis of the symmetric Heisenberg exchange and the magnetic (uniaxial) anisotropy, while the DM interaction had been either overlooked, ignored or forgotten. We will implement an approach to calculate the strength of DM interaction, the DM-vector D, based on the idea of infinitesimal rotations, in a relativistic Korringa-Kohn-Rostoker Green function (KKR-GF) method based on the density functional theory. We will prove that the strength of the DM interaction is sufficient to compete with the other interactions to produce homochiral magnetic structures. Since the DM vector D depends decisively on the symmetry of the system, clusters provide a particularly fruitful field for such studies.
生物聚合物的独特的同手性和电弱相互作用的宇称违反是两个有趣的例子,说明自然定律对于像和镜像是不同的。我们相信这也适用于沉积在表面的金属团簇中的磁性结构。我们建议研究在W、Ir、Pt、Pb或Bi等核数较大的衬底上沉积的铁磁团簇(如Fe、Co、Ni、Ru和Os)的Dzyaloshinskii- Moriya (DM)相互作用的存在和强度。我们认为,在过去20年对沉积在衬底上的小磁性物体的磁性的从头计算中,磁性仅在对称海森堡交换和磁性(单轴)各向异性的基础上得到解释,而DM相互作用要么被忽视,要么被忽略或遗忘。我们将在基于密度泛函理论的相对论Korringa-Kohn-Rostoker Green函数(KKR-GF)方法中实现一种基于无穷小旋转思想的DM-矢量D计算DM相互作用强度的方法。我们将证明DM相互作用的强度足以与其他相互作用竞争产生同手性磁结构。由于DM向量D决定性地依赖于系统的对称性,因此聚类为这类研究提供了一个特别富有成果的领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Stefan Blügel其他文献

Professor Dr. Stefan Blügel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Stefan Blügel', 18)}}的其他基金

Spin Orbit functionalized GRAPHene for resistive-magnetic MEMories
用于阻磁存储器的自旋轨道功能化石墨烯
  • 批准号:
    436553941
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Coherent few-electron spin-states in graphene nanoribbons from ab initio
从头开始石墨烯纳米带中的相干少电子自旋态
  • 批准号:
    64120009
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Units
SONS - Self-Assembled Nanoscale Magnetic Networks
SONS - 自组装纳米级磁网络
  • 批准号:
    25002211
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Magnetic properties and Kondo behavior of deposited clusters beyond density-functional theory
超越密度泛函理论的沉积团簇的磁性和近藤行为
  • 批准号:
    5405350
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Hamiltonian of the Magnetic Molecule Spin System from First-Principles Density-Functional Calculations
从第一原理密度泛函计算磁分子自旋系统的哈密顿量
  • 批准号:
    5368626
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Mikroskopische Theorie der Nicht-Kontakt-Rasterkraftmikroskopie
非接触式原子力显微镜的微观理论
  • 批准号:
    5309930
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Interface stabilized skyrmions in oxide structures for skyrmionics
用于斯格明子的氧化物结构中的界面稳定斯格明子
  • 批准号:
    403503315
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
  • 批准号:
    2339995
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Magnetic Multidimensional Spectroscopic Vibration Imaging for Evaluation of Black Rust in RC Structures
用于评估 RC 结构中黑锈的磁多维光谱振动成像
  • 批准号:
    23K17334
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Simultaneous optimization of crystal and magnetic structures: Applications to topological magnetic electrides
晶体和磁性结构的同时优化:在拓扑磁性电子化合物中的应用
  • 批准号:
    22KJ1151
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Probing in situ higher order structures of monoclonal antibodies at water-air and water-oil interfaces via high-field nuclear magnetic resonance spectroscopy for viral infections
通过高场核磁共振波谱技术在水-空气和水-油界面原位探测单克隆抗体的高阶结构以检测病毒感染
  • 批准号:
    10593377
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Manufacturing Magnetic Nano Structures
制造磁性纳米结构
  • 批准号:
    2875579
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
International collaboration on topological magnetic structures and excitations in quantum magnets using neutron scattering
利用中子散射进行量子磁体拓扑磁结构和激发的国际合作
  • 批准号:
    23KK0051
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Topological physics beneath magnetic structures and interfaces on superconductors
磁结构和超导体界面下的拓扑物理
  • 批准号:
    2745398
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
HORIZON-CL4-2022-RESILIENCE-01-12 — Multi-functional, multi-material magnetic components and structures for electrification
HORIZON-CL4-2022-RESILIENCE-01-12 — 用于电气化的多功能、多材料磁性元件和结构
  • 批准号:
    10048925
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Turbulent structures in the magnetic interstellar medium
磁性星际介质中的湍流结构
  • 批准号:
    2106607
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Interactions between spin wave and magnetic domain structures
自旋波与磁畴结构之间的相互作用
  • 批准号:
    2104912
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了