MXene-based energy materials guided by 3D Atomic-Resolution Tomography

由 3D 原子分辨率断层扫描引导的 MXene 基能源材料

基本信息

项目摘要

The efficiency of devices for green energy conversion, i.e. fuel cells and electrolyzers for hydrogen generation, is dependent on catalysts, materials that accelerate the rate of desired chemical reactions. The catalytic sciences are undergoing a revolution as scientists are pushed to focus on improving durability and reducing price rather than just maximizing activity. Such benchmarks are only achievable by the discovery of new materials and establishing processing-structure-property relationships at the atomic scale. MXenes, discovered in 2011, are the latest and least understood two-dimensional (2D) materials. They derive their name from their parent Mn+1AXn (“MAX”) phases where M is an early transition metal, A is an A-group element, X is carbon and/or nitrogen, and n = 1–3. Recent theoretical papers have predicted the suitability of MXenes as low-cost catalysts for energy applications, but a robust experimental validation of these studies does not exist. This project aims to tailor MXenes for energy conversion applications, and extract atomic-scale structural and chemical insights about their stability, using atom probe tomography (APT) and high-resolution electron microscopy. The Sokol group will synthesize novel MXenes by wet chemistry, whereas the Eliaz group will process MXenes by electroplating as well as by state-of-the-art 2D patterning and 3D printing. APT and other advanced analytical techniques will be used by the Raabe and Gault groups to characterize the chemistry and structure of these materials, before and after catalytic testing by the Rosen group. Thermal desorption spectroscopy (TDS) will be used in order to detect residues of hydrogen and oxygen in the catalyst as well as to determine the binding energy between hydrogen atoms and microstructural traps in MXene-based materials. A correlation will be made with electron microscopy and APT to determine hydrogen trapping sites and how catalytic and material properties are influenced. The Raabe and Eliaz groups will study hydrogen- and oxygen-induced degradation of the catalyst materials, which will be correlated with results from APT to better understand how to optimize their lifetime. Thus, our team will combine processing of a newly discovered class of materials (MXenes) in different ways, with catalytic testing, and state-of-the-art atomic resolution characterization to tackle one of the grand challenges of our generation.
用于绿色能量转换的装置(即用于氢气生成的燃料电池和电解槽)的效率取决于催化剂,即加速所需化学反应速率的材料。催化科学正在经历一场革命,因为科学家们被迫专注于提高耐用性和降低价格,而不仅仅是最大限度地提高活性。这些基准只有通过发现新材料并在原子尺度上建立加工-结构-性质关系才能实现。MXenes于2011年发现,是最新和最不了解的二维(2D)材料。它们的名称来源于它们的母体Mn+1AXn(“MAX”)相,其中M是前过渡金属,A是A族元素,X是碳和/或氮,并且n = 1-3。最近的理论论文已经预测了MXene作为能源应用的低成本催化剂的适用性,但这些研究的可靠实验验证并不存在。该项目旨在为能量转换应用定制MXene,并使用原子探针断层扫描(APT)和高分辨率电子显微镜提取关于其稳定性的原子尺度结构和化学见解。索科尔团队将通过湿化学合成新型MXene,而Eliaz团队将通过电镀以及最先进的2D图案化和3D打印来处理MXene。在罗森小组进行催化试验之前和之后,Raabe和Gault小组将使用APT和其他先进的分析技术来确定这些材料的化学和结构特征。将使用热脱附光谱法(TDS)检测催化剂中的氢和氧残留物,并确定氢原子与MXene基材料中微观结构陷阱之间的结合能。将与电子显微镜和APT的相关性,以确定氢捕获网站和催化和材料性能的影响。Raabe和Eliaz小组将研究氢和氧诱导的催化剂材料降解,这将与APT的结果相关联,以更好地了解如何优化其寿命。因此,我们的团队将联合收割机以不同的方式处理新发现的一类材料(MXene),并进行催化测试和最先进的原子分辨率表征,以应对我们这一代人面临的重大挑战之一。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Noam Eliaz, Ph.D.其他文献

Professor Dr. Noam Eliaz, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
  • 批准号:
    12305290
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
  • 批准号:
    82371110
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
CuAgSe基热电材料的结构特性与构效关系研究
  • 批准号:
    22375214
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
  • 批准号:
    82003509
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Zwitterion-based electrolytes for advanced energy technologies
用于先进能源技术的两性离子电解质
  • 批准号:
    DP240101407
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
SBIR Phase II: Sodium-Based Solid-State Batteries for Stationary Energy Storage
SBIR第二阶段:用于固定储能的钠基固态电池
  • 批准号:
    2331724
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
CAREER: Multi-isotopologue absorption spectroscopy for hydrogen-carrier and nitrogen-based low-carbon energy
职业:氢载体和氮基低碳能源的多同位素吸收光谱
  • 批准号:
    2339502
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SBIR Phase I: CAS: A light-based, energy-generating, carbon removal process
SBIR 第一阶段:CAS:基于光的能量产生碳去除过程
  • 批准号:
    2335596
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
BioBuild - Innovative bio-based building materials with thermal energy storage function
BioBuild——具有储热功能的创新生物基建筑材料
  • 批准号:
    10088600
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Towards innovative and affordable sodium- and zinc-based energy storage systems based on more sustainable and locally-sourced materials (eNargiZinc)
开发基于更可持续和本地采购的材料的创新且经济实惠的钠基和锌基储能系统 (eNargiZinc)
  • 批准号:
    EP/Y03127X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
STREAM 2: EPSRC Place Based IAA (PB-IAA);Northern Net Zero Accelerator - Energy Systems Integration for a Decarbonised Economy
流 2:EPSRC 地方基础 IAA (PB-IAA);北方净零加速器 - 脱碳经济的能源系统集成
  • 批准号:
    EP/Y024052/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Set-Based Dynamic Modeling and Control for Trustworthy Energy Management Systems
职业:可信赖的能源管理系统的基于集的动态建模和控制
  • 批准号:
    2336007
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of a long-term thermochemical energy storage system with simutaneous high heat power and storage density by utilizating a moving bed reactor based on nano coated salt hydrates
利用基于纳米涂层盐水合物的移动床反应器开发同时具有高热功率和存储密度的长期热化学储能系统
  • 批准号:
    24K08316
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An integrated typology-based approach to guide the future development of European historic buildings towards a clean energy transition
一种基于类型学的综合方法,指导欧洲历史建筑未来向清洁能源转型的发展
  • 批准号:
    10110887
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了