Global Analysis of Painleve Equations
Painleve 方程的全局分析
基本信息
- 批准号:10440058
- 负责人:
- 金额:$ 5.89万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B).
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Symmetries of Painleve equations : Theory of Backlund transformations (realization of affine Weyl groups) for Painleve equations has been constructed. The theory gives not only good perspective but also usefull tools to the study of Painleve equations. For example, we can easily obtain the form of each Backlund transformation as birational transformation and various kinds of special polynomials associated with Painleve equations. Similar theory is now being devepoled for discrete Painleve equations.2. The spaces of initial conditions : (1) A relation between the spaces of initial conditions and Backlund transformations has been made clear, namely, the manifold obtained by patching affine charts via Backlund transformations are isomorphic to Okamoto's space of initial conditions. Fromx this fact, we can derive that the spaces of initial conditions whose papameters are equivalent under the affine Weyl group are isomorphic to each other. (2) Spaces of initial conditions for a higher order Painleve equation of type A^<(1)>_4 and degenerated Garnier systems of two variables have been obtained.3. Exact WKB analysisi : (1) The connection problem for the second Painleve equation with a large paraneter has been solved by the use of exact WKB analysis. The connection formulas are given by compositions of those for the first Painleve equation with a large parameter. For this purpose, a reduction theorem to Birkhoff's normal form has been shown. The usual steepest descent method has been extended to one for third order linear differential equations.4. Hypergeometric equations : A problem of studying Schwarz theory in the case where all parameters are pure imaginary numbers has been proposed. Some experiments were carried out.
1. Painleve方程的对称性:Painleve方程的Backlund变换(仿射Weyl群的实现)理论已经建立。该理论为Painleve方程的研究提供了良好的前景和有用的工具。例如,我们可以很容易地得到每一个Backlund变换的形式作为双有理变换和各种特殊的多项式与Painleve方程。类似的理论现在正在开发离散Painleve方程。初始条件空间:(1)明确了初始条件空间与Backlund变换之间的关系,即用Backlund变换修补仿射图得到的流形与Okamoto初始条件空间同构。由这一事实,我们可以导出在仿射Weyl群下参数相等的初始条件空间是同构的。(2)得到了高阶A^<(1)>_4型Painleve方程和退化的二元Garnier方程组的初始条件空间.精确的WKB分析:(1)用精确WKB分析方法解决了第二类大参数Painleve方程的连接问题。利用第一类大参数Painleve方程的连接公式的合成,给出了连接公式。为此目的,一个减少定理Birkhoff的规范形式已被证明。将通常的最速下降法推广到三阶线性微分方程.超几何方程:提出了在所有参数都是纯虚数的情况下研究施瓦茨理论的问题。进行了一些实验。
项目成果
期刊论文数量(61)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Noumi and Y.Yamada: "Affine Weyl groups, discrete dynamical systems and Painleve equations"Comm.Math.Phys.. 199. 281-295 (1998)
M.Noumi 和 Y.Yamada:“仿射 Weyl 群、离散动力系统和 Painleve 方程”Comm.Math.Phys.. 199. 281-295 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Takano: "Confluence processes in defining manifolds for Painleve systems"to appear in. Tohoku J.Math..
K.Takano:“定义 Painleve 系统流形的汇合过程”出现在 Tohoku J.Math..
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Iwasaki: "A Combinatorial Formula of Leibniz Type with Application"Proceedings of the American Mathematical Society. 127. 29-33 (1999)
K.Iwasaki:“莱布尼兹型组合公式及其应用”美国数学会会刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Matano: "On Some Hamiltonian Strucures of Painleve Systems,II" Journal of the Mathematical Society of Japan. (to appear). (1999)
T.Matano:“On Some Hamiltonian Strucures of Painleve Systems,II” 日本数学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Noumi: "Higher Order Painleve Equations of Type A_l^<(1)>" Funkcialaj Ekvacioj. 41. 363-381 (1998)
M.Noumi:“A_l^<(1)> 类型的高阶 Painleve 方程”Funkcialaj Ekvacioj。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKANO Kyoichi其他文献
TAKANO Kyoichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKANO Kyoichi', 18)}}的其他基金
Studies on Painleve or Garnier systems by means of their phase spaces
通过相空间研究 Painleve 或 Garnier 系统
- 批准号:
21540224 - 财政年份:2009
- 资助金额:
$ 5.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Systems of Holonomic Differential Equations
完整微分方程组
- 批准号:
07454028 - 财政年份:1995
- 资助金额:
$ 5.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Special Function of Several Variables
多变量的特殊函数
- 批准号:
04302005 - 财政年份:1992
- 资助金额:
$ 5.89万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
相似海外基金
Structure theory of higher order Painleve equations through exact WKB analysis
通过精确 WKB 分析的高阶 Painleve 方程的结构理论
- 批准号:
20340028 - 财政年份:2008
- 资助金额:
$ 5.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exact WKB analysis for higher order Painleve equations
高阶 Painleve 方程的精确 WKB 分析
- 批准号:
16540148 - 财政年份:2004
- 资助金额:
$ 5.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)