Exact WKB analysis for higher order Painleve equations

高阶 Painleve 方程的精确 WKB 分析

基本信息

  • 批准号:
    16540148
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

To establish exact WKB analysis for Painleve hierarchies, we studied1. the Stokes geometry of a higher order Painleve equation and its underlying Lax pair,2. construction of formal solutions with free parameters to a higher order Painleve equation,3. the structure of solutions near (simple) turning points,and consequently obtained the following results.Firstly, as for 1., we obtained a complete description of the Stokes geometry for the first Painleve hierarchy (whose Lax pair has the simplest structure). On the other hand, for Noumi-Yamada systems (whose Lax pair is of size greater than two) virtual turning points of the Lax pair are also relevant to the determination of the Stokes geometry of nonlinear equations, as is pointed out by S.Sasaki. The joint work with N.Honda is now clarifying that the roles of virtual turning points and new Stokes curves of the Lax pair can be well understood by introducing graph-theoretical notions such as "tree structure".Secondly, as for 2., we succeeded in constructing instanton-type solutions by extending the method employed in the second order case, i.e., that of using reduction of a Hamiltonian system to its Birkhoff normal form, to higher order equations. Through this method we obtained formal solutions with free parameters for higher order Painleve equations that are expressible in the form of Hamiltonian systems like the first Painleve hierarchy.Finally, as for 3., the structure theorem at a simple turning point of the first kind for 0-parameter solutions of Painleve hierarchies whose Lax pair is of size two was generalized to Noumi-Yamada systems.Generalization of the structure theorem to instanton-type solutions and analysis at turning points of the second kind are important future problems; if they are overcome, connection problems for higher order Painleve equations will be solved explicitly.
为了建立准确的WKB分析painlevel层次结构,我们研究了1。一个高阶Painleve方程的Stokes几何及其潜在的Lax对,2。高阶painlevel方程自由参数形式解的构造;在(简单)拐点附近的结构解,从而得到如下结果。首先,对于1。得到了第一个painlevel层次(其Lax对具有最简单的结构)的Stokes几何的完整描述。另一方面,对于Lax对的大小大于2的Noumi-Yamada系统,其Lax对的虚拐点也与非线性方程Stokes几何的确定有关,如S.Sasaki所指出的。与本田的联合研究表明,虚拟拐点和Lax对的新Stokes曲线的作用可以通过引入“树结构”等图理论概念来很好地理解。第二,关于2。,我们成功地构造了瞬态解,将二阶情况下的方法,即利用哈密顿系统到其Birkhoff范式的方法推广到高阶方程。通过这种方法,我们得到了具有自由参数的高阶painlevel方程的形式解,这些方程可表示为像第一个painlevel层次结构那样的hamilton系统。最后,至于3。将Lax对大小为2的painlevel层次0参数解的第一类简单拐点结构定理推广到Noumi-Yamada系统。将结构定理推广到瞬态解和第二类拐点分析是未来的重要问题;如果克服了这些问题,高阶painlevel方程的连接问题将得到明确的解决。

项目成果

期刊论文数量(53)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On a local reduction of a higher order Painleve equation and its under-lying Lax pair near a simple turning point of the first kind
关于高阶 Painleve 方程及其底层 Lax 对在第一类简单转折点附近的局部约简
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Reinhard;Farwig;Toshiaki;Hishida;Detlef;Mueller;Toshiaki Hishida;Y.Takei
  • 通讯作者:
    Y.Takei
On global aspects of exact WKB analysis of operators admitting infinitely many phases.
关于允许无限多个阶段的算子的精确 WKB 分析的全局方面。
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Ishihara;Y.Kaneda;T.Aoki
  • 通讯作者:
    T.Aoki
On the complete description of the Stokes geometry for the first Painleve hierarchy
关于第一 Painleve 层次结构的 Stokes 几何的完整描述
On a local reduction of a higher order Painleve equation and its underlying Lax pair near a simple turning point of the 1st kind
关于高阶 Painleve 方程及其基础 Lax 对在第一类简单转折点附近的局部约简
Toward the exact WKB analysis for higher-order Painleve equations - The case of Noumi-Yamada systems
高阶 Painleve 方程的精确 WKB 分析 - Noumi-Yamada 系统的案例
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKEI Yoshitsugu其他文献

TAKEI Yoshitsugu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKEI Yoshitsugu', 18)}}的其他基金

Asymptotic analysis for hypergeometric systems and Garnier systems
超几何系统和卡尼尔系统的渐近分析
  • 批准号:
    21340029
  • 财政年份:
    2009
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Connection problems for Painleve hierarchies and WKB analysis
Painleve 层次结构和 WKB 分析的连接问题
  • 批准号:
    18540174
  • 财政年份:
    2006
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrable Systems and WKB Analysis
可积系统和 WKB 分析
  • 批准号:
    13640167
  • 财政年份:
    2001
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Exact WKB analysis for differential equations satisfied by oscillatory integrals
振荡积分满足的微分方程的精确 WKB 分析
  • 批准号:
    21K03300
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamental Problems in the exact WKB analysis of higher-order equations
高阶方程WKB精确分析的基本问题
  • 批准号:
    21K13811
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Studies on exact WKB analysis, topological recursion and Painleve equation
精确WKB分析、拓扑递归和Painleve方程的研究
  • 批准号:
    20K14323
  • 财政年份:
    2020
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Global structure of solutions for differential equations of singular perturbation type and exact WKB analysis
奇异摄动型微分方程解的全局结构及精确WKB分析
  • 批准号:
    19H01794
  • 财政年份:
    2019
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exact WKB analysis, spectral networks and topological recursion
精确的 WKB 分析、谱网络和拓扑递归
  • 批准号:
    19F19738
  • 财政年份:
    2019
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exact WKB analysis of hypergeometric differential equstions
超几何微分方程的精确 WKB 分析
  • 批准号:
    18K13433
  • 财政年份:
    2018
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exact WKB analysis of parametric Stokes phenomena
参数斯托克斯现象的精确 WKB 分析
  • 批准号:
    18K03385
  • 财政年份:
    2018
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exact WKB analysis, cluster algebras and topological recursion
精确的 WKB 分析、聚类代数和拓扑递归
  • 批准号:
    16K17613
  • 财政年份:
    2016
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The exact WKB analysis for Painleve hierarchies
Painleve 层次结构的精确 WKB 分析
  • 批准号:
    15K17557
  • 财政年份:
    2015
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Exact WKB analysis for hypergeometric systems
超几何系统的精确 WKB 分析
  • 批准号:
    15K17556
  • 财政年份:
    2015
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了