On a clacification problem of type II ∞ and type III ergodic transformations and its application
关于II型∞和III型遍历变换的澄清问题及其应用
基本信息
- 批准号:10440060
- 负责人:
- 金额:$ 6.14万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B).
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Multiplicity of recurrence of type II ∞ ergodic transformations : We classified the set of Markov shifts by the return sequence and also by Kakutani-Parry index. This result was appeared in a paper by J.Aaronson and H.Nakada, Israel Journal of Math. 2000. Moreover, Hamachi's research group has shown that the multiplicity of recurrence is preserved by the compact group extensions.2. It has been known that the cardinality of the set of locally finite ergodic nvariant measures for a cylinder flow is continuous if the rotaion number of the base transformation is of bounded type. These measure are induced from the PL homeomorphisms of the circle, those were considered by Herman. In this project, we proved that there is no other locally finite invariant measure for such cylinder flows. On the other hand, we considered Maharam extensions of adding machines of Markovian type. We also determined the set of locally finite ergodic invariant measures for such Maharam extensions associated to Hoelder continuous potentials.3. We studied continued fraction expansions of formal power series with a finite field coefficients. Moreover we considered the metrical theory of diopantine approximation in positive characteristic. We showed that analogue of some classical metric theorems hold. In particular, we proved the formal power series version of Dufine-Schaeffer thoerem.
1. II型∞遍历变换的常返性的多重性:我们通过返回序列和Kakutani-Parry指标对马尔可夫移位集进行了分类。这个结果发表在J.Aaronson和H.Nakada的论文中,Israel Journal of Math.2000。此外,Hamachi的研究小组已经证明了递归的多重性被紧群扩张所保持。已知柱流的局部有限遍历不变测度集的基数是连续的,如果基变换的旋转数是有界型的。这些测度是由赫尔曼所考虑的圆的PL同胚导出的。在这个项目中,我们证明了没有其他的局部有限不变的措施,这样的圆柱流。另一方面,我们考虑了马尔可夫型加法机的Maharam扩展。我们还确定了与Hoelder连续势相关的Maharam扩张的局部有限遍历不变测度集.研究了有限域系数形式幂级数的连分式展开式。此外,我们考虑了度规理论的正特征。我们证明了一些经典度量定理的类比成立。特别地,我们证明了Dufine-Schaeffer定理的形式幂级数形式。
项目成果
期刊论文数量(52)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
J.Aaronson: "Multiple Recurrence on Markov Shifts and Other Infinite Measure Preserving Transformations"Israel Journal of Mathematics. 117. 285-310 (2000)
J.Aaronson:“马尔可夫移位的多重递归和其他保持变换的无限测度”以色列数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N. Kikuchi: "On the higher integrability of the gradients of solutions to difference partial differential equations of elliptic-parabolic type" Math. Zeitschrift. (1999)
N. Kikuchi:“关于椭圆抛物型差分偏微分方程解的梯度的更高可积性”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
V.Berthe: "On Continued Frcation Expansions in Positive Characteristic : Equivalence Relations and Some Metric Properties"Expossitiones Mathematicae. 18. 257-284 (2000)
V.Berthe:“论正特征中的连续分式展开式:等价关系和一些度量性质”数学阐述。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Iekata Shiokawa&D.Duverney: "On some arith metical properties of Rogers-Ramanujan continned fraction"Osaka J.of Mathematics. (to appear).
盐川家方
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Makoto Maejima& others: "Operator semi-selfdecomposability,(C,Q)-decomposability and related classees"Tokyo J.of Mathematics. 22-2. 473-509 (1999)
前岛诚
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAKADA Hitoshi其他文献
NAKADA Hitoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAKADA Hitoshi', 18)}}的其他基金
Elucidation of Shell Structure in Unstable Nuclei Based on Microscopic Nucleon-Nucleon Interactions
基于微观核子-核子相互作用阐明不稳定核中的壳结构
- 批准号:
22540266 - 财政年份:2010
- 资助金额:
$ 6.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An ergodic study of algorithms
算法的遍历研究
- 批准号:
21340027 - 财政年份:2009
- 资助金额:
$ 6.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research toward unified understanding of low-energy phenomena in atomic nuclei
统一认识原子核低能现象的研究
- 批准号:
19540262 - 财政年份:2007
- 资助金额:
$ 6.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ergodic theory and metric number theory
遍历理论和度量数论
- 批准号:
18340032 - 财政年份:2006
- 资助金额:
$ 6.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on nuclear thermodynamical properties via microscopic theories and applications to nuclear astrophysics
微观理论研究核热力学性质及其在核天体物理中的应用
- 批准号:
15340070 - 财政年份:2003
- 资助金额:
$ 6.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ON INFINITE MEASURE PRESERVING MEASURABLE DYNAMICAL SYSTEMS
关于无限测度保持可测动态系统
- 批准号:
14540214 - 财政年份:2002
- 资助金额:
$ 6.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NATURAL EXTENSION METHOD FOR TEH ERGODIC THOERY OF NUMBER THEORETIC TRANSFORMATIONS
数论变换遍历理论的自然推广方法
- 批准号:
09640220 - 财政年份:1997
- 资助金额:
$ 6.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)