Development of unified system with non-linear analytic technique for time series data based upon the fluctuation-dissipation theorem

基于波动耗散定理的时间序列数据非线性分析技术统一系统的开发

基本信息

  • 批准号:
    10554001
  • 负责人:
  • 金额:
    $ 8.13万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 2000
  • 项目状态:
    已结题

项目摘要

We constructed a theory of KM_2O-Langevin equations for flows in a vector space with a metric in which a characterization theorem that characterizes stationarity of flow in terms of the fluctuation-dissipation theorem, a construction theorem of stationary flow, an extension theorem of stationary flow and an extension theorem of non-negative definite functions were proved. Moreover, we developed both the theory of weight transformation for degenerate flows in a vector space with a metric and the theory of non-linear information analysis for local stochastic processes with discrete time.By using these results, we resolved the non-linear prediction problem for one-dimensional strictly stationary processes which had remained to be solved for a long time after Masani-Wiener's work. Furthermore, by developing a non-linear information analysis for local multi-dimensional stochastic processes with discrete time and then using the theory of linear prediction in the theory of KM_2O-Langevin equa … More tions for degenerate flows, we solved both the non-linear prediction problem and the non-linear filtering problem for multi-dimensional stochastic processes with discrete time.As another application of the non-linear information analysis for local multi-dimensional stochastic processes with discrete time, we introduced the concept of weak causality that is weaker than yhe one of strong causality investigated so far. Precisely speaking, for given two stochastic proceses X=(X(n) ; 0【less than or equal】n【less than or equal】N), Y=Y(n) ; 0【less than or equal】n【less than or equal】N), we say that there exists a weak causality from X to Y if there exist certain M_O (0【less than or equal】M_O【less than or equal】N) and Borel functions f_n (M_O【less than or equal】n【less than or equal】N) such that Y(n)=f_n(X(n), X(n-1), ..., X(0), Y(n-1), Y(n-2), ..., Y(0))(M_O【less than or equal】n【less than or equal】N). Furthermore, by establishing a criteria of Test (CS) that determines the existence of weak causality from X to Y for given two time series data X=(X(n) ; 0【less than or equal】n【less than or equal】N), X=(X(n) ; 0【less than or equal】n【less than or equal】N), we investigated both th weak causality and the strong causality among the various time series data that are related to the E1 Nino phenomena that is said to be related to the increase of earth atmosphere temperature and announced their results at ICIAM99 that was held in Edinburg in 1999.We constructed another genarating system of the non-linear information space by proving an approximation theorem by the radial basic functions that are used in the chaotic time series data.Moreover, we developed several softs that deterimine the stationarity, causality, determinicity and chaotic property of time series data and a unified soft that derives cetain dynamics behind time series data and then predicts its future. Thus, we can apply these softs to carry out causal analysis, model analysis and prediction analysis for time series data with the framework of the theory of KM_2O-Langevin equations. Less
本文建立了向量空间中带有度量的KM_2 O-Langevin方程的理论,证明了用涨落耗散定理、定态流的构造定理、定态流的延拓定理和非负定函数的延拓定理来刻画流的定态性。此外,我们还发展了向量空间中退化流的权变换理论和离散时间局部随机过程的非线性信息分析理论,解决了Masani-Wiener等人提出的一维严格平稳过程的非线性预测问题。进一步,通过对局部多维离散时间随机过程的非线性信息分析,利用KM_2 O-Langevin方程理论中的线性预测理论,建立了一种新的非线性信息分析方法, ...更多信息 作为退化流的非线性信息分析的一个应用,我们解决了多维离散随机过程的非线性预测问题和非线性滤波问题,作为多维离散局部随机过程的非线性信息分析的另一个应用,我们引入了弱因果关系的概念,弱因果关系的概念比强因果关系的概念弱。精确地说,对于给定的两个随机过程X=(X(n); 0[小于或等于]n[小于或等于]N),Y=Y(n); 0[小于或等于]n[小于或等于]N),如果存在一定的M_O,则X到Y存在弱因果关系(0[小于或等于]M_O[小于或等于]N)和Borel函数f_n(M_O[小于或等于]n[小于或等于]N)使得Y(n)=f_n(X(n),X(n-1),…,X(0),Y(n-1),Y(n-2),.,Y(0))(M_O[小于或等于]n[小于或等于]N)。进一步,通过建立一个判定两个时间序列数据X=(X(n); 0[小于或等于]n[小于或等于]N),X=(X(n); 0[小于或等于]n[小于或等于]N),我们研究了与厄尔尼诺现象有关的各种时间序列数据之间的弱因果关系和强因果关系,据说厄尔尼诺现象与全球变暖的增加有关。在1999年爱丁堡举行的ICIAM 99上,我们利用径向基函数对混沌时间序列数据的逼近定理,构造了非线性信息空间的另一个生成系统,并开发了几个软件,对混沌时间序列数据的平稳性、因果性、时间序列数据的确定性和混沌性,以及一个统一的软件,推导出时间序列数据背后的某些动力学,然后预测其未来。因此,可以在KM_2 O-Langevin方程理论的框架下,应用这些软件对时间序列数据进行因果分析、模型分析和预测分析。少

项目成果

期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Matsuura and Y.Okabe: "On a non-linear prediction problem fro one-dimensional stochastic processes"Japanese Journal of Mathematics. (to appear). (2001)
M.Matsuura 和 Y.Okabe:“关于一维随机过程的非线性预测问题”日本数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Kanamaru,T.Horita and Y.Okabe: "Stochastic resonance in the Hodgkin-Huxley network" Journal of the Physical Society of Japan. 67巻12号. 4058-4063 (1998)
T. Kanamaru、T. Horita 和 Y. Okabe:“Hodgkin-Huxley 网络中的随机共振”《日本物理学会杂志》第 67 卷,第 12 期。4058-4063 (1998)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Okabe: "On the theory of KM_2O-Langevin equations for stationary flows(I):characterization theorem" Journal of the Mathematical Society of Japan. 52巻(掲載予定). (1999)
Y.Okabe:“关于平稳流的KM_2O-Langevin方程的理论(I):表征定理”日本数学会杂志第52卷(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Okabe: "On the theory of KM_2O-Langevin equations for stationary flows (II) : construction theorem"The special volume in honor of the 70th birthday of Professor Takeyuki Hida. (掲載予定). (2000)
Y.Okabe:“关于平稳流的KM_2O-Langevin方程的理论(II):构造定理”纪念飞田武之教授70岁生日的特刊(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Okabe: "On the theory of KM_2O-Langevin equations for stationary flows (II) : construction theorem"to appear in the special volume in honor of the 70th birthday of Professor Takeyuki Hida. (2001)
Y.Okabe:“关于平稳流的KM_2O-Langevin方程的理论(II):构造定理”出现在纪念飞田武之教授70岁生日的特刊中。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKABE Yasunori其他文献

OKABE Yasunori的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKABE Yasunori', 18)}}的其他基金

Pathologic analysis of Rett syndrome with the model induced pluripotent stem cells for development of treatment method
使用模型诱导多能干细胞对雷特综合征进行病理分析以开发治疗方法
  • 批准号:
    22791009
  • 财政年份:
    2010
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Neural Development of Methyl-CpG-Binding Protein 2-Null Embryonic Stem Cells : A System for Studing Rett Syndrome
甲基-CpG 结合蛋白 2-Null 胚胎干细胞的神经发育:研究 Rett 综合征的系统
  • 批准号:
    20790756
  • 财政年份:
    2008
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Time series analysis for abnormality test and modeling of corrplex system and a study for the derived model from a view point of the theory of stochastic processes
随机过程理论视角下复杂系统异常测试与建模的时间序列分析及推导模型研究
  • 批准号:
    14340030
  • 财政年份:
    2002
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A study of identification problem for continuous model in phenomena of complex system based on the theory of Langevin equations from the viewpoint of the theory of stochastic processes
从随机过程理论的角度研究基于朗之万方程理论的复杂系统现象中的连续模型辨识问题
  • 批准号:
    10440026
  • 财政年份:
    1998
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
A study on modeling and prediction for nonlinear phenomena from the viewpoint of the theory of stochastic processes
随机过程理论视角下的非线性现象建模与预测研究
  • 批准号:
    07459007
  • 财政年份:
    1995
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A study of stationarity and causality based on the theory of KM_2O-Langevin equations
基于KM_2O-Langevin方程理论的平稳性和因果性研究
  • 批准号:
    03452011
  • 财政年份:
    1991
  • 资助金额:
    $ 8.13万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了