Research on log canonical divisors on higher dimensional algebraic varieties
高维代数簇的对数正则因数研究
基本信息
- 批准号:11440002
- 负责人:
- 金额:$ 5.25万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let X be a normal complete algebraic variety and L an invertible sheaf on it . I considered the following effective non-vanishing conjecture : "Assume that there exists an R-divisor B on X such that the pair (X, B) is KIT, L is nef. and L - (K_X +B) is nef and big. Then there exists a non-zero holomorphic global sections of L". I proved it in the case where the numerical Kodaira dimension of L is at most 2, or X is a minimal 3-fold or a Fano 4-fold. In the course of the proof, I obtained a logarithmic version of the semipositivity theorem for algebraic fiber spaces. Combining with the adjunction theorem which I proved earlier, one can apply the result for the existence problem of ladders on Fano varieties.I considered the following relative version of the Fujita freeness conjecture which may lead to the solution of Fujita's original conjecture in arbitrary dimension : "Let f be a surjective morphism from a smooth projective variety Y to an other smooth projective variety X such that f … More is smooth over the complement of a normal crossing divisor on X, and L an ample line bundle on X. Let F be the direct image sheaf of the canonical sheaf of Y by f. Then the tensor product of F and the m-th power of L is generated by global sections if m is at least n+1." The result obtained states that the relative conjecture is reduced to the conjecture on the local existence of certain log canonical divisor, and thus the relative conjecture is confirmed when n is at most 4. In order to prove the result, I extended the Q-divisorial version of the vanishing theorem for the direct image sheaf F in terms of the parabolic structure on F, where the parabolic structure is defined using the filtration of the Hodge bundle determined by the monodromy of the variation of Hodge structures.I considered a new approach toward the existence problem of the flip from the view point of the theory of bounded derived categories of coherent sheaves on algebraic varieties. As a preparation, I proved that the existence problem of the flip is reduced to the existence problem of the flop. Then I showed by example that for varieties with quotient singularities, the usual bounded derived categories of coherent sheaves are not necessarily invariant under the flops. Then I showed that if we consider orbifold sheaves instead of usual sheaves, everything works well in some special cases. Less
设X是正规完备代数簇,L是其上的可逆层.我考虑了以下有效的非零猜想:“假设X上存在一个R-因子B,使得对(X,B)是KIT,L是nef。而L -(K_X +B)是nef和big。则存在L”的非零全纯整体截面。我证明了它的情况下,数值科代拉维数的L是最多2,或X是一个最小的3倍或法诺4倍。在证明过程中,我得到了代数纤维空间的半正性定理的对数形式。结合我前面证明的附加定理,可以将结果应用于Fano簇上梯子的存在问题。我考虑了以下相对版本的Fujita自由猜想,这可能会导致Fujita原始猜想在任意维度上的解:“令f是从光滑投射簇Y到另一光滑投射簇X的满射态射,使得f ...更多信息 在X上的正规交叉因子的补上是光滑的,L是X上的样本线丛。设F是Y的标准层被f的直像层。则F和L的m次幂的张量积由整体截面生成,如果m至少为n+1。“所得结果表明,相对猜想被归结为关于局部存在某个对数典型因子的猜想,从而当n不大于4时,相对猜想被证实.为了证明这一结果,我利用F上的抛物结构推广了直象层F的Q-除灭定理,其中抛物结构是利用由Hodge结构的变分单值性所决定的Hodge丛的滤子来定义的,我从有界导范畴理论的观点考虑了一种新的方法来解决翻转的存在性问题代数簇上的凝聚层作为准备,我证明了翻转的存在性问题归结为触发器的存在性问题。然后,我通过例子表明,对于具有商奇点的簇,通常的凝聚层的有界导出范畴在触发器下不一定是不变的。然后我证明了,如果我们考虑orbifold层而不是通常的层,在某些特殊情况下一切都很好。少
项目成果
期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yujiro Kawamata: "On the extension problem of pluricanonical forms"Contemporary Math.. 241. 193-207 (1999)
Yujiro Kawamata:“论多形式的可拓问题”当代数学.. 241. 193-207 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
川又雄二郎: "On algebraic fiber spaces"Asian. J. Math.. (印刷中).
Yujiro Kawamata:“论代数纤维空间”亚洲 J. Math..(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yujiro Kawamata: "On effective non-vanishing and base-point-freeness"Asian J. Math.. 4. 173-182 (2000)
Yujiro Kawamata:“论有效的不消失和无基点”Asian J. Math.. 4. 173-182 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAWAMATA Yujiro其他文献
KAWAMATA Yujiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAWAMATA Yujiro', 18)}}的其他基金
Research on canonical divisors of higher dimensional algebraic varietie
高维代数簇的正则因数研究
- 批准号:
17204001 - 财政年份:2005
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Studies on Hodge Theory and Hypergeometric Functions
霍奇理论与超几何函数研究
- 批准号:
09640010 - 财政年份:1997
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of higher dinendional algebraic varaieties
更高维代数簇的研究
- 批准号:
07454004 - 财政年份:1995
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Number theory of algebraic varieties
代数簇数论
- 批准号:
03452003 - 财政年份:1991
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Comparative Study of Various Fundamental Groups and Their Structure in Arithmetic and Topology
算术和拓扑中各种基本群及其结构的比较研究
- 批准号:
01460002 - 财政年份:1989
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Research on singularities on an algebraic variety
代数簇的奇点研究
- 批准号:
16K05089 - 财政年份:2016
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive research of Galois embedding of algebraic variety
代数簇的伽罗瓦嵌入综合研究
- 批准号:
15K04813 - 财政年份:2015
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Resolution of singularities of an algebraic variety over an algebraically closed field in positive characteristic
正特征代数闭域上代数簇奇点的解析
- 批准号:
23740016 - 财政年份:2011
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study of canonical divisors on higher dimensional algebraic variety
高维代数簇的正则因数研究
- 批准号:
22244002 - 财政年份:2010
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Deformations of curves on a higher dimensional algebraic variety and their obstructions
高维代数簇上曲线的变形及其阻碍
- 批准号:
21740029 - 财政年份:2009
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Lie algebra of differential oeprators on algebraic variety and its representations
代数簇微分算子的李代数及其表示
- 批准号:
09640030 - 财政年份:1997
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimates For Integer Points on Algebraic Variety by using Diophantine Approxiwatic
使用丢番图近似估计代数簇上的整数点
- 批准号:
06640082 - 财政年份:1994
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Resolution of Singularities of an Algebraic Variety Over a Characteristic p Field
数学科学:特征 p 域上代数簇奇异性的解析
- 批准号:
8901892 - 财政年份:1989
- 资助金额:
$ 5.25万 - 项目类别:
Continuing Grant
Mathematical Sciences: Resolution of Singularities of an Algebraic Variety over a Field of Characteristic p.
数学科学:特征域上代数簇奇异性的解析 p。
- 批准号:
8700957 - 财政年份:1987
- 资助金额:
$ 5.25万 - 项目类别:
Continuing Grant
Real Algebraic Variety Structures on P.L. Manifolds
P.L. 上的实代数簇结构
- 批准号:
7701763 - 财政年份:1977
- 资助金额:
$ 5.25万 - 项目类别:
Standard Grant














{{item.name}}会员




