Geometric Representation theory of reductive group
约简群的几何表示论
基本信息
- 批准号:11440011
- 负责人:
- 金额:$ 5.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Bernstein degree, associated cycles and isotropy representation for a unitary highest weight representation of reductive Lie groups are important family of geometric invariants. For the symplectic groups, Ochiai with K. Nishiyama determines the Bernstein degree. For orthogonal and unitary groups, Nishiyama, Ochiai and K. Taniguchi determines the Bernstein degree and associated cycles. The general case including exceptional groups are done by Ochiai and Shohei Kato. This results are generalized to describe the degree of spherical orbits of a family of multiplicity-free representations by Ochiai and Kato. This is a new application of the Selberg-type integral.A representation is considered as a quantization of a function space. Oshima introduces the notion of homogenized enveloping algebra, in order to deal with universal enveloping algebras and coordinate rings simultaneously. Using the Capelli operator, which is a quantization of minors, Oshima describes the annihilator ideals of generalized Verma modules of scalar type. Related to this work, Ochiai describes the difference of the centers of the enveloping algebras and the rings of invariant differential operators. Based on the work above, Oshima with Shimeno characterize the image of the Poisson transform associated to non-minimal parabolic.Wakimoto discuss the modular invariance of characters of various affine algebras. Kaneko investigates the modular function *j from the geometry of singular moduli and supersingular elliptic curves over finite fields. Ochiai also discuss the quasi-modularity of the generating functions of an elliptic curve with a specified type of ramification indeces. Konno considers the unipotent representations of reductive groups over local fields, especially gives the description of CAP representations, which is a special subclass of unipotent representation, for low-rank groups.
约化李群的酉最高权表示的伯恩斯坦度、相伴圈和迷向表示是一类重要的几何不变量。对于辛群,Ochiai与K.西山确定了伯恩斯坦度。对于正交群和酉群,Nishiyama,Ochiai和K.谷口确定了伯恩斯坦度和相关的循环。一般情况下,包括特殊群体是由落合和Shohei加藤。这个结果被推广到描述由Ochiai和Kato提出的一族多重性自由表示的球面轨道的度。这是Selberg型积分的一个新应用,一个表示被认为是函数空间的一个量子化. Oshima为了同时处理泛包络代数和坐标环,引入了齐次包络代数的概念。使用Capelli算子,这是一个量子化的未成年人,大岛描述了零化子理想的广义Verma模的标量型。与此相关的工作,落合介绍了差异的中心包络代数和环不变微分算子。在此基础上,Oshima和Shimeno刻画了非极小抛物型的Poisson变换的象,Wakimoto讨论了各种仿射代数特征标的模不变性。Kaneko从有限域上奇异模和超奇异椭圆曲线的几何学出发研究了模函数 *j。Ochiai还讨论了具有特定类型分歧指数的椭圆曲线的生成函数的拟模性。Konno研究了局部域上约化群的幂幺表示,特别是对低秩群给出了幂幺表示的一个特殊子类CAP表示的刻画.
项目成果
期刊论文数量(69)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Shimeno: "An analogue of Hardy's theorem on the Poincare disk"Bull.of Okayama Univ. of Science. 36A. 7-10 (2001)
N.Shimeno:“庞加莱圆盘上哈代定理的模拟”冈山大学的 Bull.。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H. Ochiai: "Non-commutative harmonic, oscillators and Fuchsian ordinary differential equations, Kyushu Univ. preprint series 1998-18"Comm. Math. Phys.. 217, no. 2. 357-373 (2001)
H. Ochiai:“非交换谐波、振子和 Fuchsian 常微分方程,九州大学预印本系列 1998-18”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shohei Kato and H. Ochiai: "The degree of orbits of multiplicity-free actions (with Shohei Kato)"Asterisque. 273. 139-158 (2001)
Shohei Kato 和 H. Ochiai:“多重自由作用的轨道度(与 Shohei Kato)”星号。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.-J.Cheng and V.G.Kac,M.Wakimoto: "Extensions of Neveu-Schwarz conformal modules"Jour.Math.Phys.. 41. 2271-2294 (2000)
S.-J.Cheng 和 V.G.Kac,M.Wakimoto:“Neveu-Schwarz 共形模的扩展”Jour.Math.Phys.. 41. 2271-2294 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Kaneko, N.Todaka: "Hypergeometric modular forms and supersingular elliptic curves"CRM Proceedings and Lecture Notes. 30. 79-83 (2002)
M.Kaneko、N.Todaka:“超几何模形式和超奇异椭圆曲线”CRM 论文集和讲义。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OCHIAI Hiroyuki其他文献
OCHIAI Hiroyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OCHIAI Hiroyuki', 18)}}的其他基金
Moduli space of motions of geometric objects
几何物体运动的模空间
- 批准号:
23654054 - 财政年份:2011
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Integrals and special functions in representation theory
表示论中的积分和特殊函数
- 批准号:
19204011 - 财政年份:2007
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Geometric invariants of representations of real reductive groups and integral transformations
实数约简群和积分变换表示的几何不变量
- 批准号:
15340005 - 财政年份:2003
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Annilhilators of highest weight modules for Iwasawa algebras
岩泽代数最高权模的歼灭子
- 批准号:
2114466 - 财政年份:2018
- 资助金额:
$ 5.18万 - 项目类别:
Studentship
Highest weight modules over the Virasoro algebra and the modular group action
Virasoro 代数和模块化群动作的最高权重模块
- 批准号:
431644-2012 - 财政年份:2012
- 资助金额:
$ 5.18万 - 项目类别:
University Undergraduate Student Research Awards
The Action of the Modular Group on Signature Characters of Irreducible Highest Weight Representations of the Virasoro Algebra
模群对Virasoro代数不可约最高权表示的特征符的作用
- 批准号:
427466-2012 - 财政年份:2012
- 资助金额:
$ 5.18万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Beyond Kirillov--Reshetikhin modules: character formulae and highest weight categories
超越基里洛夫--雷舍蒂欣模块:角色公式和最高权重类别
- 批准号:
0901253 - 财政年份:2009
- 资助金额:
$ 5.18万 - 项目类别:
Standard Grant
Character Formulas For Irreducible Highest Weight Modules Over Graded Lie Algebras (Mathematical Sciences)
分级李代数上不可约最高权模块的特征公式(数学科学)
- 批准号:
8201260 - 财政年份:1982
- 资助金额:
$ 5.18万 - 项目类别:
Standard Grant