Theory and Practice of Un-trained Neural Networks

未经训练的神经网络的理论与实践

基本信息

项目摘要

Deep neural networks have emerged as highly successful tools for signal and image recovery and restoration. This success is often attributed to large amounts of training data. However, recent findings challenge this view and instead suggest that a major contributing factor to this success is that the architecture of the network imposes strong prior assumptions---so strong that it enables image recovery without any training data. For example, our promising preliminary results show that it is possible i) to remove noise and corruptions from an image by fitting a convolutional network to the corrupted image, without ever having trained the network, and to ii) achieve state-of-the-art performance for accelerated magnetic resonance imaging, an important medical imaging technique, again without using any training data.However, it is widely open why un-trained networks work so well for signal recovery problems, how their high computational cost can be reduced, and whether this technique is applicable to a much broader set of problems, beyond image reconstruction problems. Motivated by the recent success of un-trained neural networks, the goal of this project is to i) understand theoretically why un-trained neural networks work so well for imaging problems, ii) evaluate and guarantee robustness of un-trained neural networks,iii) develop fast algorithms for signal recovery with un-trained methods, andiv) to build new algorithms based on un-trained neural networks for applications beyond imaging, in particular for unsupervised learning.
深度神经网络已经成为信号和图像恢复和恢复的非常成功的工具。这种成功通常归功于大量的训练数据。然而,最近的研究结果挑战了这一观点,相反,这一成功的一个主要因素是网络的架构强加了强有力的先验假设-如此强大,以至于它可以在没有任何训练数据的情况下进行图像恢复。例如,我们有希望的初步结果表明,有可能i)通过将卷积网络拟合到受损图像来从图像中去除噪声和受损,而无需训练网络,以及ii)再次在不使用任何训练数据的情况下实现加速磁共振成像(一种重要的医学成像技术)的最先进性能。为什么未经训练的网络对于信号恢复问题工作得如此好,如何能够降低它们的高计算成本,以及这种技术是否适用于图像重建问题之外的更广泛的问题集合,这些都是广泛公开的。受未训练神经网络最近成功的启发,该项目的目标是i)从理论上理解为什么未训练神经网络在成像问题上如此有效,ii)评估和保证未训练神经网络的鲁棒性,iii)使用未训练方法开发信号恢复的快速算法,以及iv)构建基于未训练神经网络的新算法,用于成像以外的应用,特别是对于无监督学习。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Reinhard Heckel其他文献

Professor Dr. Reinhard Heckel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Reinhard Heckel', 18)}}的其他基金

Solving linear inverse problems with end-to-end neural networks: expressivity, generalization, and robustness
使用端到端神经网络解决线性逆问题:表达性、泛化性和鲁棒性
  • 批准号:
    464123524
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Deep Learning for Imaging Non-Static Objects
用于非静态物体成像的深度学习
  • 批准号:
    517586365
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

HSI Pilot Project: Institutionalizing a Teaching and Learning Excellence Community of Practice focused on First-Year Student Success in STEM
HSI 试点项目:将卓越教学和学习实践社区制度化,重点关注一年级学生在 STEM 方面的成功
  • 批准号:
    2345247
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Bridging Child Language Research to Practice for Language Revitalization
会议:将儿童语言研究与语言复兴实践联系起来
  • 批准号:
    2331639
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
  • 批准号:
    AH/X011747/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Participating in Literacies and Computer Science: A research-practice partnership to explore new computational literacies
参与读写能力和计算机科学:探索新计算读写能力的研究与实践伙伴关系
  • 批准号:
    2420361
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Expert Network for Novel Foods Regulatory Challenges – UK's first collaboration cluster to support best practice and facilitate the regulatory approval journey of innovative food ingredients
新食品监管挑战专家网络 — 英国首个支持最佳实践并促进创新食品成分监管审批进程的合作集群
  • 批准号:
    10114832
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Trust in Pacific Healthcare: Transforming research, policy and practice
对太平洋医疗保健的信任:改变研究、政策和实践
  • 批准号:
    DP230102606
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Building capacity, fostering community, and supporting champions to implement meaningful family engagement in child health research and practice: Development and evaluation of the Family Engagement in Research Champions Community of Practice (FER Champion
建设能力、培育社区并支持倡导者在儿童健康研究和实践中实施有意义的家庭参与:制定和评估家庭参与研究倡导者实践社区(FER Champion
  • 批准号:
    484903
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Salary Programs
Theory use in social care practice: improving implementation and outcomes
社会关怀实践中的理论运用:改进实施和结果
  • 批准号:
    DE240100154
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Seva as a prayer practice; Krishna worship in the Pushtimarg
服务作为祈祷练习;
  • 批准号:
    ES/Y008006/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Strengthening Evidence-Based Policy Practice for Sustainable Food Systems under the EU-AU Partnership
在欧盟-非盟伙伴关系下加强可持续粮食系统的循证政策实践
  • 批准号:
    10101252
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了