Solving linear inverse problems with end-to-end neural networks: expressivity, generalization, and robustness
使用端到端神经网络解决线性逆问题:表达性、泛化性和鲁棒性
基本信息
- 批准号:464123524
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep neural networks have emerged as highly successful and universal tools for image recovery and restoration. They achieve state-of-the-art results on tasks ranging from image denoising over super-resolution to image reconstruction from few and noisy measurements. As a consequence, they are starting to be used in important imaging technologies, such as GEs newest computational tomography scanners. There are several ways to use neural networks to solve inverse problems, but the best performing ones---both in terms of reconstruction performance and speed of reconstruction---train a convolutional neural network end-to-end to recover an image directly from a measurement or from a coarse reconstruction of the measurement. While the resulting networks perform very well empirically, a range of important theoretical questions are wide open. Specifically,i) it is unclear why neural networks are so successful in representing solutions operators for image recovery problems,ii) it is unclear how many examples are required for learning a solution operator for an image recovery problem, and iii) the resulting neural network might be sensitive to perturbations. The overarching goal of this project is to establish theory for learning to solve linear inverse problems with end-to-end neural networks by addressing the open questions i-iii. Specifically, we willi) characterize how networks can enable reconstruction of a structured subset corresponding to real world signals,ii) develop a learning-to-invert theory for a simple class of networks, and iii) prove robustness guarantees for neural networks trained for signal reconstruction.
深度神经网络已经成为图像恢复和恢复的非常成功和通用的工具。他们在从超分辨率图像去噪到从少量和有噪声的测量中重建图像的任务上取得了最先进的结果。因此,它们开始用于重要的成像技术,如GE最新的计算断层扫描仪。有几种方法可以使用神经网络来解决逆问题,但性能最好的方法--在重建性能和重建速度方面--训练卷积神经网络端到端,直接从测量或从测量的粗略重建中恢复图像。虽然由此产生的网络在经验上表现得非常好,但一系列重要的理论问题仍然存在。具体而言,i)尚不清楚为什么神经网络在表示图像恢复问题的解算子方面如此成功,ii)尚不清楚学习图像恢复问题的解算子需要多少示例,以及iii)所得神经网络可能对扰动敏感。该项目的总体目标是通过解决开放问题i-iii,建立学习用端到端神经网络解决线性逆问题的理论。具体来说,我们将i)表征网络如何能够重建对应于真实的世界信号的结构化子集,ii)为一类简单的网络开发学习反转理论,iii)证明为信号重建训练的神经网络的鲁棒性保证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Reinhard Heckel其他文献
Professor Dr. Reinhard Heckel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Reinhard Heckel', 18)}}的其他基金
Theory and Practice of Un-trained Neural Networks
未经训练的神经网络的理论与实践
- 批准号:
456465471 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Deep Learning for Imaging Non-Static Objects
用于非静态物体成像的深度学习
- 批准号:
517586365 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
全纯Mobius变换及其在相对论和信号分析中的应用
- 批准号:11071230
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
枢纽港选址及相关问题的算法设计
- 批准号:71001062
- 批准年份:2010
- 资助金额:17.6 万元
- 项目类别:青年科学基金项目
MIMO电磁探测技术与成像方法研究
- 批准号:40774055
- 批准年份:2007
- 资助金额:35.0 万元
- 项目类别:面上项目
统计过程控制图的设计理论及其应用
- 批准号:10771107
- 批准年份:2007
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23H01250 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Non-destructive evaluation of 3D plastic strain and residual stress distributions induced by earthquakes using non-linear inverse analysis
使用非线性反演分析对地震引起的 3D 塑性应变和残余应力分布进行无损评估
- 批准号:
22K03831 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mixed Precision Arithmetic for Large Scale Linear Inverse Problems
大规模线性反问题的混合精度算法
- 批准号:
2208294 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Linear and Nonlinear Nanophotonics: Simulation, Deep Learning and Inverse Design
线性和非线性纳米光子学:仿真、深度学习和逆向设计
- 批准号:
555670-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Linear and Nonlinear Nanophotonics: Simulation, Deep Learning and Inverse Design
线性和非线性纳米光子学:仿真、深度学习和逆向设计
- 批准号:
555670-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Parameter-Free Optimization Algorithms for Underdetermined Linear Inverse Problems
欠定线性反问题的无参数优化算法
- 批准号:
20K23324 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Linear and Nonlinear Nanophotonics: Simulation, Deep Learning and Inverse Design
线性和非线性纳米光子学:仿真、深度学习和逆向设计
- 批准号:
555670-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
New develpment of spectral and inverse scattering theory-Non linear problems and continuum limit
光谱与逆散射理论的新进展-非线性问题与连续极限
- 批准号:
20K03667 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Moore-Penrose generalized inverse of linear relations
线性关系的摩尔-彭罗斯广义逆
- 批准号:
527134-2018 - 财政年份:2018
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




