Development of a methodology for plausibility checks for linear structural mechanic finite element simulations using Deep Learning
使用深度学习开发线性结构力学有限元模拟的合理性检查方法
基本信息
- 批准号:456585803
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the current industrial environment, design accompanying linear finite element simulations are often carried out by product developers and not exclusively by calculation engineers with several years of professional experience. This leads to frequent iterations in the product development process and can lead to incorrect decisions based on insufficiently validated results. An automatic plausibility check for linear structural-mechanical FE simulations is an important method to support product developers. The use of Convolutional Neural Networks (CNN) and Machine Learning methods represents an enormous potential to identify correlations in data and to build a model with high prediction quality. In the applicant's preparatory work it could be shown that a plausibility check for FE calculations using Deep Learning and CNNs is possible. However, it is necessary to increase the prediction quality of the artificial neural network by adjusting the parameters and to demonstrate the application of the method to new simulations. Furthermore, local areas of the FE-simulation shall be investigated, especially to detect numerical errors like singularities.The aim of the project is to create a method for plausibility checks of similar linear structural-mechanical FE simulations based on the preliminary work on the projection method and singularity recognition. Furthermore, the network parameters of different CNNs and machine learning methods are to be optimized in order to implement a plausibility check with high prediction quality. FE-simulation results cannot be directly transferred to a neural network or machine learning algorithm, but have to be converted to a uniform computer-processable form. Within the framework of the research project, the projection method developed in preliminary work is applied, which uses spherical detector surfaces to transform arbitrary simulations into matrices with uniform size. The generated matrices contain all relevant information to classify a simulation as plausible or implausible. A Deep Learning CNN or SVM does the classification. In addition to the classification of the entire simulation, local areas should also be examined. Especially singularities in FE-simulations shall be detected and accordingly give feedback to the user.With an automatic plausibility check, errors in the simulation setup can be detected automatically at an early stage. It therefore represents an enormous potential for increasing the simulation quality in virtual product development. Especially if FE simulations are performed by product developers who have less simulation knowledge than experienced calculation engineers. A method will be developed which allows to consider similar geometries and simulation boundary conditions of linear FE-simulations.
在当前的工业环境中,伴随线性有限元模拟的设计通常由产品开发人员进行,而不仅仅是由具有多年专业经验的计算工程师进行。这会导致产品开发过程中的频繁迭代,并可能导致基于未经充分验证的结果的错误决策。线性结构力学有限元仿真的可扩展性自动检查是支持产品开发的重要方法。卷积神经网络(CNN)和机器学习方法的使用代表了识别数据相关性和构建高预测质量模型的巨大潜力。在申请人的准备工作中,可以证明使用深度学习和CNN对FE计算进行可验证性检查是可能的。然而,有必要通过调整参数来提高人工神经网络的预测质量,并证明该方法在新模拟中的应用。此外,还应研究有限元模拟的局部区域,特别是检测数值误差,如奇异性。本项目的目的是在投影法和奇异性识别的基础上,创建一种类似线性结构力学有限元模拟的可验证性检查方法。此外,不同CNN和机器学习方法的网络参数将被优化,以实现具有高预测质量的可扩展性检查。FE仿真结果不能直接传输到神经网络或机器学习算法,而是必须转换为统一的计算机可处理形式。在该研究项目的框架内,应用了在前期工作中开发的投影方法,该方法使用球形探测器表面将任意模拟转换为具有统一大小的矩阵。生成的矩阵包含所有相关信息,以将模拟分类为合理或不合理。深度学习CNN或SVM进行分类。除了对整个模拟进行分类外,还应检查局部区域。特别是FE模拟中的奇异点应被检测并相应地向用户提供反馈。通过自动可扩展性检查,可以在早期阶段自动检测模拟设置中的错误。因此,它代表了一个巨大的潜力,提高虚拟产品开发的仿真质量。特别是如果FE模拟是由模拟知识少于经验丰富的计算工程师的产品开发人员执行的。将开发一种方法,允许考虑类似的几何形状和模拟边界条件的线性有限元模拟。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Sandro Wartzack其他文献
Professor Dr.-Ing. Sandro Wartzack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Sandro Wartzack', 18)}}的其他基金
Form synthesis at early embodiment design stage: A computer-aided method to model preliminary embodiment designs
早期实施例设计阶段的形式合成:对初步实施例设计进行建模的计算机辅助方法
- 批准号:
401324164 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
CAD features to model physical aspects of human-machine interactions
用于模拟人机交互的物理方面的 CAD 功能
- 批准号:
396858371 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
TopoRestruct – Converting topology optimization results into a design geometry, which meets the requirements for manufacturability, functionality and mechanical stress in the product development process
TopoRestruct â 将拓扑优化结果转换为设计几何形状,满足产品开发过程中对可制造性、功能性和机械应力的要求
- 批准号:
411012054 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Shape aware Computer Aided Tolerancing: A new methodical and computational framework for the assembly and mobility simulation based on Skin Model Shapes (ShapeCAN)
形状感知计算机辅助公差:基于蒙皮模型形状 (ShapeCAN) 的装配和移动模拟的新方法和计算框架
- 批准号:
278389853 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
[ProPro 2.0] - Product-oriented process management - Computer-aided modeling as well as graph-based analysis and visualization of the matrix-based product description
[ProPro 2.0] - 以产品为导向的流程管理 - 计算机辅助建模以及基于矩阵的产品描述的基于图形的分析和可视化
- 批准号:
211191171 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Functional product validation and optimization of technical systems in motion as a part of product lifecycle oriented tolerance management
作为面向产品生命周期的公差管理的一部分,功能产品验证和动态技术系统优化
- 批准号:
165053436 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Physics-Inspired Neural Networks in the Evaluation, Generation and Design of Frame Structures
物理启发的神经网络在框架结构的评估、生成和设计中的应用
- 批准号:
523871886 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
UPREN USED – User, product and environmental influences on usability and emotional product design
UPREN USED â 用户、产品和环境对可用性和情感产品设计的影响
- 批准号:
398054801 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
基于成份法的致洪暴雨过程组织化深厚湿对流机理研究
- 批准号:40575022
- 批准年份:2005
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
-- - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
-- - 项目类别:
An Integrated Model of Contextual Safety, Social Safety, and Social Vigilance as Psychosocial Contributors to Cardiovascular Disease
情境安全、社会安全和社会警惕作为心血管疾病社会心理因素的综合模型
- 批准号:
10749134 - 财政年份:2024
- 资助金额:
-- - 项目类别:
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
A methodology to connect functionalized gonadal constructs to a chick embryo through mechanically induced blood vessels from an egg
一种通过鸡蛋机械诱导血管将功能化性腺结构连接到鸡胚胎的方法
- 批准号:
24K15741 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Naturalistic Social Communication in Autistic Females: Identification of Speech Prosody Markers
自闭症女性的自然社交沟通:语音韵律标记的识别
- 批准号:
10823000 - 财政年份:2024
- 资助金额:
-- - 项目类别:
CAS: Developing Data-Driven, Automated Methodology to Understand and Control Light-Driven Catalytic Processes
CAS:开发数据驱动的自动化方法来理解和控制光驱动的催化过程
- 批准号:
2350257 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
スマートシティのエコシステム構築メソドロジー(methodology)
智慧城市生态系统构建方法论
- 批准号:
24K05098 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)