Research on canonical divisors of higher dimensional algebraic varieties
高维代数簇的正则因数研究
基本信息
- 批准号:14340003
- 负责人:
- 金额:$ 5.25万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We investigated the relationship between the minimal models of algebraic varieties and the derived categories. The derived categories of algebraic varieties attracted many researchers of different branches of mathematics after Kontsevich proposed his homological mirror symmetry conjecture. But the derived category is also a natural subject for investigation from the view point of the theory of minimal models. We found that the apparently complicated derived categories have very simple and beautiful structures and behave in a parallel way with the minimal model program.We considered two different kinds of equivalences of algebraic varieties in the article "D-equivalence and K-equivalence". Two algebraic varieties are said to be D-equivalent if they have equivalent bounded derived categories of coherent sheaves. Under the additional condition that they are birationally equivalent, they are said to be K-equivalent if their canonical divisors become linearly equivalent when pulled back to … More a common resolution. The concept of K-equivalence arises naturally in the theory of minimal models, but it is totally unrelated to the D-equivalence by definition. We conjectured that these equivalences coincide, and proved this conjecture in special cases. For example, we proved that the varieties connected by a standard flop or a Mukai flop have equivalent derived categories. We proved that any 3-dimensional varieties with only Q-factorial terminal singularities which are K-equivalent are D-equivalent.This article has been frequently cited by others, and the results obtained in this paper combined with the subsequent ones were reviewed in Bourbaki seminar in the year 2004/2005.The theory of derived categories works well for smooth varieties, but not for singular ones. On the other hand, we have to deal with singular varieties in the theory of minimal models. So we considered the generalization to the singular varieties, and found that we can sometimes overcome the difficulty by considering the Deligne-Mumford stack associated to the given variety. We proved that if two smooth Deligne-Mumford stacks associated to quasi-smooth toxic varieties have the same level of the canonical divisors, then their derived categories are equivalent. We proved that the flop over the cotangent space of the Grassmannian variety G(2,4) induces an equivalence of derived categories. We also proved that the derived categories of toxic varieties are generated by exceptional collections of sheaves. Less
我们研究了代数簇的最小模型和派生类别之间的关系。康采维奇提出同调镜像对称猜想后,代数簇的派生范畴吸引了许多数学不同分支的研究者。但从最小模型理论的角度来看,派生范畴也是一个自然的研究课题。我们发现表面上复杂的派生范畴具有非常简单和优美的结构,并且与最小模型程序以并行的方式运行。我们在“D-等价性和K-等价性”一文中考虑了代数簇的两种不同等价性。如果两个代数簇具有等价的相干滑轮有界派生类别,则称它们是 D 等价的。在它们双有理等价的附加条件下,如果它们的规范因数在拉回到共同分辨率时变得线性等价,则称它们是 K-等价的。 K-等价的概念自然出现在最小模型理论中,但从定义上来说,它与D-等价完全无关。我们猜想这些等价性是一致的,并在特殊情况下证明了这个猜想。例如,我们证明了由标准翻牌或 Mukai 翻牌连接的品种具有等效的派生类别。我们证明了任何只有 Q 阶乘末端奇点且 K 等价的 3 维簇都是 D 等价的。这篇文章被其他人频繁引用,本文的结果与后续的结果一起在 2004/2005 年的 Bourbaki 研讨会上进行了回顾。派生范畴理论适用于光滑簇,但不适用于奇异簇。另一方面,我们必须处理最小模型理论中的奇异变体。因此,我们考虑了对奇异品种的泛化,并发现有时可以通过考虑与给定品种相关的德利涅-芒福德堆栈来克服困难。我们证明,如果与准光滑有毒品种相关的两个光滑 Deligne-Mumford 堆栈具有相同水平的规范除数,则它们的派生类别是等效的。我们证明了格拉斯曼簇 G(2,4) 余切空间上的翻转会导致派生范畴的等价。我们还证明了有毒品种的派生类别是由特殊的滑轮集合产生的。较少的
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
川又雄二郎: "Euivalences of derived catgories of sheaves on smooth stacks"Amer.J.Math.. (掲載予定).
Yujiro Kawamata:“平滑堆栈上滑轮派生类别的等效性”Amer.J.Math..(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
D-Equivalence and K-Equivalence
- DOI:10.4310/jdg/1090351323
- 发表时间:2002-05
- 期刊:
- 影响因子:2.5
- 作者:Y. Kawamata
- 通讯作者:Y. Kawamata
川又雄二郎: "Francia's flip and derived categories"Algebraic Geometry (a volume in Memory of Paolo Francia). 197-215 (2002)
Yujiro Kawamata:“Francia 的翻转和派生范畴”代数几何(Memory of Paolo Francia 中的一卷)197-215(2002 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Derived equivalence for stratified Mukai flop on G (2,4)
G (2,4) 上分层 Mukai 翻牌的推导等价
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:永野武;編;三ツ石 郁夫;吉本圭一;成 元哲;金有植;川又 雄二郎
- 通讯作者:川又 雄二郎
Log Crepant Birational Maps and Derived Categories
对数 Crepant 双有理图和派生类别
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:E.Bannai;S.Y.Song;H.Yamada;大谷信介;Yujiro Kawamata
- 通讯作者:Yujiro Kawamata
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAWAMUTA Yujiro其他文献
KAWAMUTA Yujiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DERIVED CATEGORY METHODS IN ARITHMETIC: AN APPROACH TO SZPIRO'S CONJECTURE VIA HOMOLOGICAL MIRROR SYMMETRY AND BRIDGELAND STABILITY CONDITIONS
算术中的派生范畴方法:通过同调镜像对称性和布里奇兰稳定性条件推导SZPIRO猜想
- 批准号:
EP/V047299/1 - 财政年份:2021
- 资助金额:
$ 5.25万 - 项目类别:
Research Grant
McKay correspondence and derived category
麦凯对应及派生类别
- 批准号:
19K03444 - 财政年份:2019
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generalized complex structures, 4 dimensional differential topology, noncommutative algebraic geometry and derived category
广义复结构、4维微分拓扑、非交换代数几何和派生范畴
- 批准号:
16K13755 - 财政年份:2016
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
integrable system and moduli theory of derived category
可积系统与派生范畴模论
- 批准号:
26400043 - 财政年份:2014
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on generalized geometric structures, 4 dimensional differential topology and derived category
广义几何结构、4维微分拓扑及派生范畴研究
- 批准号:
25610011 - 财政年份:2013
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study of problems related to derived category of coherent sheaves
相干滑轮派生范畴相关问题的研究
- 批准号:
25800017 - 财政年份:2013
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Moduli of vector bundles with connection and derived category
具有连接和派生范畴的向量丛的模
- 批准号:
22740014 - 财政年份:2010
- 资助金额:
$ 5.25万 - 项目类别:
Grant-in-Aid for Young Scientists (B)