A super parallel vision system implemented with mixed analog and digital circuits
模拟与数字混合电路实现的超级并行视觉系统
基本信息
- 批准号:14350188
- 负责人:
- 金额:$ 8.7万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of the present research is to develop a novel vision system that can carry out the real-time image processing with mixed analog/digital architecture. Accordingly, we have designed and fabricated the system consisting of a silicon retina, an analog Very Large Scale Integrated (VLSI) circuit and Field Programmable Gate Array. (FPGA). The silicon retina emulates the sustained and the transient responses found in the vertebrate retina. The output emulating sustained response possesses a Palladian-Gaussian-like receptive field and therefore carries out a smoothing and contrast-enhancement on input images. The output emulating the transient response was obtained by subtracting consecutive images that were smoothed out by the resistive network. The outputs of these two channels can be obtained alternately from the silicon retina in real time, within time delays not exceeding a few tens of ms, in indoor illumination. The outputs of the chip are offset-suppressed analog voltages since uncontrollable mismatches of transistor characteristics are compensated for with the aid of sample/hold circuits embedded in each pixel circuit. The analog outputs from the silicon retina representing the preprocessed image with these channels are transferred to the FPGA through a A/D converter. The FPGA carries out digital image computations such as edge detection, target tracking and depth perception. The parallel vision system developed in the present study is readily used in a variety of engineering applications such as the fields of robot vision and multi-media.
本研究的目的是开发一种新型的视觉系统,能够实现模拟/数字混合结构的实时图像处理。因此,我们设计并制作了由硅视网膜、模拟超大规模集成电路(VLSI)和现场可编程门阵列组成的系统。(Fpga)。硅视网膜模拟脊椎动物视网膜的持续和瞬时反应。模拟持续响应的输出具有类似Palladian-Gauss的感受场,从而对输入图像进行平滑和对比度增强。模拟瞬时响应的输出是通过减去由电阻网络平滑的连续图像而获得的。这两个通道的输出可以在室内照明下,在不超过几十毫秒的时间延迟内,从硅视网膜实时交替获得。芯片的输出是偏移抑制的模拟电压,因为晶体管特性的不可控失配借助嵌入在每个像素电路中的采样/保持电路来补偿。来自硅视网膜的模拟输出通过A/D转换器传输到FPGA,代表具有这些通道的经预处理的图像。由现场可编程门阵列完成边缘检测、目标跟踪、深度感知等数字图像计算。本文开发的并行视觉系统在机器人视觉、多媒体等领域具有广泛的工程应用前景。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Seiji Kameda, Tetsuya Yagi: "An analog VLSI chip emulating sustained and transient response channels of the vertebrate retina"IEEE trans. Neural Networks. (Accepted).
Seiji Kameda、Tetsuya Yagi:“模拟 VLSI 芯片模拟脊椎动物视网膜的持续和瞬态响应通道”IEEE trans。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Seiji Kameda, Tetsuya Yagi: "Calculating direction of motion with sustained and transient responses of silicon retina"Proc. SICE Annual Conference 2002 in Osaka. 2374-2379 (2002)
Seiji Kameda、Tetsuya Yagi:“利用硅视网膜的持续和瞬态响应计算运动方向”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Shimonomura, K.Inoue, S.Kameda, T.Yagi: "A Novel Robot Vision applicable to Real Time Target Tracking"Journal of Robotics and Mechatronics. Vol.15,No.2. 185-191 (2003)
K.Shimonomura、K.Inoue、S.Kameda、T.Yagi:“适用于实时目标跟踪的新型机器人视觉”机器人与机电一体化杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuhiro Shimonomura, Keisuke Inoue, Seiji Kameda, Tetsuya Yagi: "A Novel Robot Vision Applicable to Real Time Target Tracking"Journal of Robotics and Mechatronics, Vol.15, No.2, 2003. (Accepted). 534-540
Kazuhiro Shimonomura、Keisuke Inoue、Seiji Kameda、Tetsuya Yagi:“适用于实时目标跟踪的新型机器人视觉”机器人与机电一体化杂志,第 15 卷,第 2 期,2003 年。(已接受)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuhiro Shimonomura, Keisuke Inoue, Tetsuya Yagi: "A target tracking employing a silicon retina system"Proc. SICE Annual Conference 2002 in Osaka. 1229-1230 (2002)
Kazuhiro Shimonomura、Keisuke Inoue、Tetsuya Yagi:“采用硅视网膜系统的目标跟踪”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAGI Tetsuya其他文献
YAGI Tetsuya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAGI Tetsuya', 18)}}的其他基金
Electric device which interfaces heart to regenerated cardiac tissue derived from iPS cells
将心脏与源自 iPS 细胞的再生心脏组织连接起来的电子装置
- 批准号:
25560197 - 财政年份:2013
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Implementation of intelligent integrated bio-imaging system
智能集成生物成像系统的实现
- 批准号:
19206041 - 财政年份:2007
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Multichip parallel integrated artificial vision for brain interface
多芯片并行集成人工视觉脑接口
- 批准号:
17360162 - 财政年份:2005
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A study on the perception mechanisms of the retina with a computational and a physiological approaches.
通过计算和生理学方法研究视网膜的感知机制。
- 批准号:
07680876 - 财政年份:1995
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Devolopment of a parallel analog vision chip for early vision
开发用于早期视觉的并行模拟视觉芯片
- 批准号:
05650412 - 财政年份:1993
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Development of a real-time evaluation method using an AI-based image processing system in liver tumor ablaition
基于人工智能的图像处理系统开发肝脏肿瘤消融实时评估方法
- 批准号:
23K11923 - 财政年份:2023
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of big data analysis platform for fish behavior in the sea by image processing, change detection, and machine learning techniques
利用图像处理、变化检测、机器学习技术构建海洋鱼类行为大数据分析平台
- 批准号:
23K14005 - 财政年份:2023
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Developing next-generation, AI-enabled, medical image processing for multiple sclerosis clinical trials and routine care.
开发用于多发性硬化症临床试验和日常护理的下一代人工智能医学图像处理。
- 批准号:
2877679 - 财政年份:2023
- 资助金额:
$ 8.7万 - 项目类别:
Studentship
CRII: SHF: RUI: Custom Hardware Accelerators for Privacy-Preserving Image Processing
CRII:SHF:RUI:用于保护隐私的图像处理的定制硬件加速器
- 批准号:
2347253 - 财政年份:2023
- 资助金额:
$ 8.7万 - 项目类别:
Standard Grant
Image Processing Techniques for the Segmentation, Fusion, and Registration of Ultrasound Images from Intracavitary Gynecologic Brachytherapy Procedures
用于腔内妇科近距离放射治疗过程中超声图像的分割、融合和配准的图像处理技术
- 批准号:
557687-2021 - 财政年份:2022
- 资助金额:
$ 8.7万 - 项目类别:
Postdoctoral Fellowships
Development of an Image Processing Algorithm to Customize Cochlear Implant Procedures
开发用于定制人工耳蜗植入程序的图像处理算法
- 批准号:
548003-2020 - 财政年份:2022
- 资助金额:
$ 8.7万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Creating a Technological Infrastructure for the Digital Restoration of Cultural Properties Using Statistical Image Processing and Deep Learning
利用统计图像处理和深度学习为文化财产数字化修复创建技术基础设施
- 批准号:
22H00748 - 财政年份:2022
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development and utilization of digital / analog teaching materials using 3D image processing and 3D printers for biological education
利用3D图像处理和3D打印机进行生物教育的数字/模拟教材的开发和利用
- 批准号:
22K02988 - 财政年份:2022
- 资助金额:
$ 8.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
I-Corps: Image processing platform to identify photosynthetic pigment density to measure nitrogen content and manage fertilizer (Smart Sustainable Fertilizer Manager)
I-Corps:图像处理平台,用于识别光合色素密度,测量氮含量并管理肥料(智能可持续肥料管理器)
- 批准号:
2227256 - 财政年份:2022
- 资助金额:
$ 8.7万 - 项目类别:
Standard Grant
Deep graphical models and methods for multi-modal biomedical image processing, analysis, and interpretation
用于多模态生物医学图像处理、分析和解释的深度图形模型和方法
- 批准号:
RGPIN-2018-03966 - 财政年份:2022
- 资助金额:
$ 8.7万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




