Quasi-Steady State Approximation for Partial Differential Equations

偏微分方程的准稳态近似

基本信息

项目摘要

Systems with multiple time scales arise in all areas of science and engineering. In this project, we are going to study the quasi-steady state approximation (QSSA) for these systems with a focus on reaction-diffusion equations. QSSA is a reduction method to remove rapidly equilibrating degrees of freedom from the dynamics. The method originated in chemistry but has found broadrange applications. In this project, we are going beyond the case of ordinary differential equations (ODE) and focus on QSSA for partial differential equations (PDE), which is a challenging topic due to its complexity and rich mathematical structures. A main goal is to rigorously study QSSA for PDE by merging two main approaches, namely functional-analytic techniques based on duality or entropy methods, and techniques based upon geometric slow manifold reductions. In particular, we are going to start with rigorous derivation of Michaelis-Menten kinetics for enzyme reaction taking into account spatial diffusion, where we aim to extend existing techniques in the functional-analytic and geometric settings. In addition, we are going to contrast, compare, and combine the results for the same model, while investigating structural assumptions for validity of QSSA for other general models. Our project also includes components dealing with long-term dynamics of the full and reduced models via energy/entropy estimates as well as via bifurcation theory. It is our expectation that the theory of QSSA for PDE will be significantly advanced through the potential success of this project.
多时间尺度系统出现在科学和工程的各个领域。在这个项目中,我们将研究这些系统的准稳态近似(QSSA),重点是反应扩散方程。QSSA是一种从动力学中快速去除平衡自由度的简化方法。该方法起源于化学,但已被广泛应用。在这个项目中,我们超越了常微分方程(ODE)的情况,专注于偏微分方程(PDE)的QSSA,由于其复杂性和丰富的数学结构,这是一个具有挑战性的话题。一个主要目标是严格研究QSSA PDE合并两个主要的方法,即基于对偶或熵方法的功能分析技术,和基于几何慢流形减少的技术。特别是,我们将开始严格推导酶反应的Michaelis-Menten动力学,同时考虑空间扩散,我们的目标是扩展现有的技术在功能分析和几何设置。此外,我们将对比,比较,并结合联合收割机的结果为同一个模型,同时调查的结构假设的有效性QSSA的其他一般模型。我们的项目还包括通过能量/熵估计以及通过分叉理论处理完整和简化模型的长期动态的组件。我们期望通过这个项目的潜在成功,偏微分方程的QSSA理论将得到显著的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Christian Kühn, Ph.D.其他文献

Professor Christian Kühn, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Christian Kühn, Ph.D.', 18)}}的其他基金

Analysis of Partial Differential Equations with Cross-Diffusion and Stochastic Driving
具有交叉扩散和随机驱动的偏微分方程分析
  • 批准号:
    370099393
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Geometric Desingularization of Higher Codimension Singularities in Fast-Slow Systems
快慢系统中高维奇点的几何去奇异化
  • 批准号:
    444753754
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Transport and Epidemic Networks: Graphs, Optimization and Simulation (TENGOS)
交通和流行病网络:图形、优化和模拟 (TNGOS)
  • 批准号:
    458548755
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Stochastic Epidemic-Economic Adaptive Network Dynamics
随机流行病-经济自适应网络动力学
  • 批准号:
    496237661
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Regulation of Steady-State Hematopoiesis by Microbiota-Driven IFN-I Signaling
微生物驱动的 IFN-I 信号传导对稳态造血的调节
  • 批准号:
    10678151
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Fabrication of a highly selective photocatalyst for methane conversion by controlling photocatalyst surface structures combined with quasi-steady state operando spectroscopy
通过控制光催化剂表面结构结合准稳态操作光谱制备用于甲烷转化的高选择性光催化剂
  • 批准号:
    22KJ3098
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Postdoctoral Fellowship: EAR-PF: Investigating spatiotemporal variability of forearc mantle wedge serpentinization and rheology during non-steady state subduction
博士后奖学金:EAR-PF:研究非稳态俯冲过程中弧前地幔楔形蛇纹石化和流变学的时空变化
  • 批准号:
    2305636
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
Advancing Steady-State and Dynamic Operation of Islanded Hybrid AC-DC Microgrids
推进孤岛混合交直流微电网的稳态和动态运行
  • 批准号:
    RGPIN-2018-04343
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Steady-State and Transient Properties of Strongly Correlated Single Molecule Junctions
强相关单分子连接的稳态和瞬态特性
  • 批准号:
    2154323
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Identification of distributed neural sources of the auditory steady-state response in psychosis Biotypes
精神病生物型中听觉稳态反应的分布式神经源的识别
  • 批准号:
    10543156
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Impact of polyamines on ILC3 function at steady state and in preclinical model of colitis
多胺对稳态和结肠炎临床前模型中 ILC3 功能的影响
  • 批准号:
    10528082
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Twofold Reduction in Gadolinium Dose for Brain MRI Exams using a Novel Unbalanced T1 Relaxation-Enhanced Steady-State (uT1RESS) Technique
使用新型不平衡 T1 弛豫增强稳态 (uT1RESS) 技术将脑 MRI 检查的钆剂量减少两倍
  • 批准号:
    10507378
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Linking steady-state cytokine signaling to alveolar macrophage function in homeostasis and lung infection
将稳态细胞因子信号传导与体内平衡和肺部感染中的肺泡巨噬细胞功能联系起来
  • 批准号:
    10816167
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Evaluation of Heat Transfer Characteristics Considering Thermal Contact Resistance between Sintered Ag Particles and Metallic Solid Using Steady-State Method
考虑烧结银颗粒与金属固体之间的热接触热阻的传热特性评估采用稳态法
  • 批准号:
    22K14196
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了