Integral Equation Theory of Continuum Percolation
连续渗流积分方程理论
基本信息
- 批准号:457534544
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
When designing composite materials, it is often useful to know whether the individual components form a system spanning network along which heat or charges can be transported through the material – i.e. it is useful to know under which conditions a given component of a composite percolates. Most theoretical approaches to the percolation transition can predict critical exponents accurately, but they give only rough estimates for the percolation thresholds of complex interacting systems (apart from some special cases such as fibres). We have recently developed a new theoretical approach, which allows to compute percolation thresholds and network structures with high accuracy. Here, we propose to apply this approach to a set of systems with non-trivial interactions and particle geometries, which are of experimental interest. We will study hard spheres, spheres with van der Waals interactions, spheres with screened Coulomb interactions and hard platelets and consider size polydispersity in all cases. We will predict percolation thresholds, network structures and conductivities for direct comparison with experiments on suspensions of colloidal metallic particles.
在设计复合材料时,了解单个组分是否形成跨越网络的系统通常是有用的,热量或电荷可以沿着该网络沿着通过材料传输-即,了解复合材料的给定组分在何种条件下膨胀是有用的。大多数理论方法的渗流过渡可以准确地预测临界指数,但他们只能粗略估计复杂的相互作用系统的渗流阈值(除了一些特殊情况下,如纤维)。我们最近开发了一种新的理论方法,它允许计算渗透阈值和网络结构具有高精度。在这里,我们建议将这种方法应用到一组系统与非平凡的相互作用和粒子的几何形状,这是实验的兴趣。我们将研究硬球,球与货车的德瓦尔斯相互作用,球与屏蔽库仑相互作用和硬血小板,并考虑在所有情况下的大小多分散性。我们将预测逾渗阈值,网络结构和电导率直接与胶体金属颗粒悬浮液的实验进行比较。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Tanja Schilling其他文献
Professorin Dr. Tanja Schilling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Tanja Schilling', 18)}}的其他基金
Non-equilibrium theory of nucleation at first order phase transitions.
一级相变成核的非平衡理论。
- 批准号:
430195928 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Dynamik von Phasenübergängen in Suspensionen anisotroper Kolloide
各向异性胶体悬浮液中相变的动力学
- 批准号:
5437950 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
Percolation in Suspensions of Rod-like Colloids under Shear Flow
剪切流下棒状胶体悬浮液的渗流
- 批准号:
531007218 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Non-Equilibrium Work And Dissipation in Coarse-Grained Models
粗粒度模型中的非平衡功和耗散
- 批准号:
450047308 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似海外基金
Development of an integral equation theory satisfying the variational principle and accurate for long-range potential systems
满足变分原理且对长程势系统准确的积分方程理论的发展
- 批准号:
23K04666 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fusion and development of multiconfigurational electronic state theory and integral equation theory suitable for quasidegenerate systems in solution
适用于溶液中准副生成系统的多构型电子态理论与积分方程理论的融合与发展
- 批准号:
15K05392 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Qualitative theory of integral equation with delay and its application
时滞积分方程的定性理论及其应用
- 批准号:
26400174 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multiresolution numerical methods for the integral equation theory of solute-solvent interactions in molecular liquids
分子液体中溶质-溶剂相互作用积分方程理论的多分辨率数值方法
- 批准号:
181654620 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Three-dimensional integral equation theory for predicting protein-ligand binding affinities
预测蛋白质-配体结合亲和力的三维积分方程理论
- 批准号:
137795400 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Discrimination and solvation in racemate/a stimulation and integral equation theory study
外消旋体的辨别和溶剂化/刺激和积分方程理论研究
- 批准号:
203314-2003 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Discrimination and solvation in racemate/a stimulation and integral equation theory study
外消旋体的辨别和溶剂化/刺激和积分方程理论研究
- 批准号:
203314-2003 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Discrimination and solvation in racemate/a stimulation and integral equation theory study
外消旋体的辨别和溶剂化/刺激和积分方程理论研究
- 批准号:
203314-2003 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Discrimination and solvation in racemate/a stimulation and integral equation theory study
外消旋体的辨别和溶剂化/刺激和积分方程理论研究
- 批准号:
203314-2003 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Discrimination and solvation in racemate/a stimulation and integral equation theory study
外消旋体的辨别和溶剂化/刺激和积分方程理论研究
- 批准号:
203314-2003 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




