Qualitative theory of integral equation with delay and its application

时滞积分方程的定性理论及其应用

基本信息

  • 批准号:
    26400174
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2014
  • 资助国家:
    日本
  • 起止时间:
    2014-04-01 至 2018-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
時間遅れをもつ非線形差分方程式の振動条件と相平面解析
时滞非线性差分方程的振动条件和相平面分析
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    松永秀章;土井パティ;杉江実郎
  • 通讯作者:
    杉江実郎
Mini-Workshop on Delay Equations in Osaka 2017
2017 年大阪延迟方程小型研讨会
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
微分方程式および差分方程式の解の漸近挙動に対する時間遅れの影響
时滞对微分方程和差分方程解的渐近行为的影响
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    松永秀章
  • 通讯作者:
    松永秀章
Explicit oscillation criteria for a delay difference system
延迟差分系统的显式振荡准则
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Iguchi;F. Hirosawa and W. N. Nascimento;H. Matsunaga
  • 通讯作者:
    H. Matsunaga
Formal adjoint operators and asymptotic formula for solutions of autonomous linear integral equations
自治线性积分方程解的形式伴随算子和渐近公式
  • DOI:
    10.1016/j.jmaa.2013.08.035
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Matsunaga;S. Murakami and Y. Nagabuchi
  • 通讯作者:
    S. Murakami and Y. Nagabuchi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matsunaga Hideaki其他文献

Matsunaga Hideaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

非線形偏差分方程式と非線形関数方程式の可積分性・特異点とエントロピーの観点から
从非线性微分微分方程和非线性函数方程的可积性、奇异性和熵的角度
  • 批准号:
    23K22401
  • 财政年份:
    2024
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Extending the geometric theory of discrete Painleve equations - singularities, entropy and integrability
扩展离散 Painleve 方程的几何理论 - 奇点、熵和可积性
  • 批准号:
    22KF0073
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
特異点の手法による差分方程式の可積分性判定
使用奇点法确定差分方程的可积性
  • 批准号:
    23K12996
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Difference equations and differential equations associated with accessory parameters
差分方程和与附件参数相关的微分方程
  • 批准号:
    22K03368
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
可積分系理論を基盤とした革新的な数理技術の開発・深化と応用
基于可积系统理论的创新数学技术的发展、深化与应用
  • 批准号:
    22K03441
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了