Correlation of the transport properties and spin texture of magnetic bubbles by in-situ TEM

原位 TEM 分析磁泡输运特性与自旋织构的相关性

基本信息

项目摘要

Data volumes have been on a major upturn since the beginning of the decade and are about to rise even faster now that Big Data and the Internet of Things are ramping up. The application of topological spin solitons to magnetic data storage and information processing is anticipated to be a potential solution to this ever-increasing demand. In order to achieve this vision, a detailed understanding of the spin solitons static and dynamic properties is required for a tailored design of future devices. Within this project, we will develop the platform for high-resolution magnetic characterisation of spin texture dynamics in the transmission electron microscope (TEM) in combination with transport measurements. With its world-leading expertise in advanced microscopy and electronic device fabrication and characterisation, the University of Sydney, provides the perfect environment for the proposed research. The outcome of this work will be the first ever volume-sensitive investigation into how spin textures behave dynamically at the nanometer scale.
自本世纪初以来,数据量一直在大幅上升,随着大数据和物联网的发展,数据量将以更快的速度增长。拓扑自旋孤子在磁数据存储和信息处理中的应用有望成为这一日益增长的需求的潜在解决方案。为了实现这一愿景,需要对自旋孤子的静态和动态特性有详细的了解,以便为未来的器件量身定做。在这个项目中,我们将结合输运测量,开发用于在透射电子显微镜(TEM)中对自旋织构动力学进行高分辨率磁性表征的平台。悉尼大学凭借其在先进显微镜和电子设备制造和表征方面的世界领先专业知识,为拟议的研究提供了完美的环境。这项工作的结果将是有史以来第一次对自旋织构在纳米尺度上的动态行为进行体积敏感的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Sebastian Schneider其他文献

Dr. Sebastian Schneider的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Sebastian Schneider', 18)}}的其他基金

Rückkehrstipendium
返回奖学金
  • 批准号:
    531289024
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    WBP Return Grant

相似国自然基金

基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
  • 批准号:
    82371144
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
BNIP-2调控E-cadherin细胞内分选运输的机制研究
  • 批准号:
    32100540
  • 批准年份:
    2021
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
磷脂分子参与植物细胞器互作及自噬的调控机制
  • 批准号:
    91954206
  • 批准年份:
    2019
  • 资助金额:
    301.0 万元
  • 项目类别:
    重大研究计划
IRE1α-XBP1在脂肪细胞和肝细胞间跨细胞信号传导机制研究
  • 批准号:
    31900564
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
活细胞高分辨率成像解析clathrin介导的内吞囊泡形成早期内体的分子机制
  • 批准号:
    31970659
  • 批准年份:
    2019
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
膜蛋白TMED10调节非经典分泌分子机制的研究
  • 批准号:
    31872832
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
TBC1d23调节细胞器互作及突变引起脑桥小脑发育不全的机制研究
  • 批准号:
    91854121
  • 批准年份:
    2018
  • 资助金额:
    89.0 万元
  • 项目类别:
    重大研究计划
细胞分泌的调控及相关肠炎的机理研究
  • 批准号:
    31871429
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
生长素调控植物细胞网格蛋白质膜招募的分子机理研究
  • 批准号:
    31801193
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Formation mechanism and transport properties of carbon nanotube molecular junctions by chirality transformation
手性变换碳纳米管分子结的形成机制及输运特性
  • 批准号:
    23K26489
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Formation mechanism and transport properties of carbon nanotube molecular junctions by chirality transformation
手性变换碳纳米管分子结的形成机制及输运特性
  • 批准号:
    23H01796
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dynamics of high-energy nuclear collisions based on core-corona picture and transport properties of QGP
基于核日冕图和QGP输运特性的高能核碰撞动力学
  • 批准号:
    23K03395
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding Thermal Transport Properties in Electrically Conductive Polymers
了解导电聚合物的热传输特性
  • 批准号:
    2312559
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Iterative Design and Fabrication of Hyperuniform-Inspired Materials for Targeted Mechanical and Transport Properties
DMREF/合作研究:针对目标机械和传输性能的超均匀材料的迭代设计和制造
  • 批准号:
    2323342
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Iterative Design and Fabrication of Hyperuniform-Inspired Materials for Targeted Mechanical and Transport Properties
DMREF/合作研究:针对目标机械和传输性能的超均匀材料的迭代设计和制造
  • 批准号:
    2323343
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Transport properties and device applications of one-dimensional heterostructure nanotubes
一维异质结构纳米管的输运特性及器件应用
  • 批准号:
    22KF0070
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
  • 批准号:
    10668030
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Treating neurotoxicity and cognitive deficits due to hyperphosphorylated tau.
治疗由过度磷酸化 tau 引起的神经毒性和认知缺陷。
  • 批准号:
    10815399
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了