Diffeomorphism groups --from a view point of rigidity problem

微分同胚群--从刚性问题的角度看

基本信息

  • 批准号:
    12440016
  • 负责人:
  • 金额:
    $ 6.78万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2003
  • 项目状态:
    已结题

项目摘要

<Kanai> He made computation of Gelfand-Fuks cohomology of diffeomorphism groups and their homogeneous spaces especially keeping in his mind possible applications of it to rigidity problems. A new perspective on infinitesimal rigidity of Anosov actions of higher-rank abelian groups that arise from semisimple Lie groups of rank greater than one has also been obtained by him.<Izeki> It is known that the domain of discontinuity of a convex-cocompact Kleinian group is compact. Conversely, he proved that a Kleinian group is convex cocompact provided the Hausdorff dimension of the limit set is less than n/2.<Izeki and Nayatani> They introduced a combinatorial notion of harmonic map of a simplicial complex into singular space of nonpositive curvature, and showed an existence theorem under an appropriate assumption. A fixed point theorem for an isometric action of a discrete group on a nonpositively curved space has been established as an application.<Kotani> She investigated, in a joint work of T.Sunada, the large deviation principle. Another achievement by her is the Lipschitz continuity of the bounds of the spectrum of some self-adjoint operator with magnetic, effect.<Tsuboi> A projective Anosov flow is said to be regular if its stable and unstable plane fields are integrated by smooth foliations. He proved that for a regular projective Anosov flow on a Seifert fibered space if the associated foliations have no compact leaf then it is a regular Anosov flow, and in consequence is quasi-Fuksian, due to a theorem of Ghys.<Fujiwara> In the joint work with Bestvina, he made a computation of the second bounded cohomology of the mapping class groups. It follows that a discrete subgroup of a Lie group can never be realized as a subgroup of the mapping class groups.
<kanai>他对差异群体及其同质空间的Gelfand-Fuks共同体进行了计算,尤其是在他的脑海中可能将其应用于僵化问题。他对高级阿贝尔群体Anosov作用的无限刚性的新观点,是由他获得的半级别的排名群。相反,他证明了一个kleinian群体是凸起的,只要限制集的Hausdorff维度小于N/2。离散组对非弯曲空间的等轴测动作的固定点定理已作为应用。她的另一个成就是Lipschitz的连续性在某些具有磁性,效果的自相配操作员的边界的连续性。他证明,对于常规的投影型Anosov在Seifert纤维纤维上流动,如果相关的叶子没有紧凑的叶子,那么它是常规的Anosov流动,因此,由于Ghys的定理是Ghys的定理。<fujiwara>。因此,谎言组的离散子组永远无法被实现为映射类组的子组。

项目成果

期刊论文数量(66)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Kotani, T.Sunada: "Spectral geometry of crystal lattices"Contemporary Math.. 338. (2003)
M.Kotani,T.Sunada:“晶格的光谱几何”当代数学.. 338。(2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Koji Fujiwara: "On the outer automorphism group of a hyperbolic group"Israel J.of Math.. 131. 277-284 (2002)
藤原浩二:“论双曲群的外自同构群”Israel J.of Math.. 131. 277-284 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Motoko Kotani: "Lipscitz continuity of the spectra of the magnetic transition operators on a crystal lattice"J.Geom.Phys.. 47. 323-342 (2003)
Motoko Kotani:“晶格上磁跃迁算子光谱的 Lipscitz 连续性”J.Geom.Phys.. 47. 323-342 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
井関裕靖, 納谷信: "組合せ調和写像と超剛性-Singular targetの場合"数理解析研究所講究録. 1329. 1-7 (2003)
Hiroyasu Iseki、Makoto Naya:“组合调和映射和超刚性 - 奇异目标的情况”数学分析研究所 Kokyuroku。1329. 1-7 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hiroyasu Izeki: "Quasiconformal stability of kleinian groups and an embedding of a space of flat conformal structure"Conform.Geom.Dyn.. 4. 108-119 (2000)
Hiroyasu Izeki:“克莱因群的拟共形稳定性和平坦共形结构空间的嵌入”Conform.Geom.Dyn.. 4. 108-119 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KANAI Masahiko其他文献

KANAI Masahiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KANAI Masahiko', 18)}}的其他基金

Cross ratio and its falks
交叉比及其缺点
  • 批准号:
    26400065
  • 财政年份:
    2014
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The condition C and the property(T)-Looking for what is behind global variational methods and unitary representation theory
条件C和性质(T)——寻找全局变分方法和酉表示论背后的原因
  • 批准号:
    22654021
  • 财政年份:
    2010
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Various aspects of rigidity problems
刚性问题的各个方面
  • 批准号:
    17204004
  • 财政年份:
    2005
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
RIGIDITY OF GROUP ACTIONS
团体行为的刚性
  • 批准号:
    09640128
  • 财政年份:
    1997
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

bounded cohomology and symplectic topology around mapping class groups
围绕映射类群的有界上同调和辛拓扑
  • 批准号:
    20540056
  • 财政年份:
    2008
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic structures of non-compact hyperbolic 3-manifoIds and differential geometry
非紧双曲3-流形的渐近结构和微分几何
  • 批准号:
    12640063
  • 财政年份:
    2000
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bounded cohomology and 3-dimensional hyperbolic geometry
有界上同调和 3 维双曲几何
  • 批准号:
    07640140
  • 财政年份:
    1995
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ends of covering 3-manifolds
覆盖 3 歧管的末端
  • 批准号:
    05640132
  • 财政年份:
    1993
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
低次元多様体の位相幾何学とBOUNDED COHOMOLOGY
低维流形拓扑和有界上同调
  • 批准号:
    62740061
  • 财政年份:
    1987
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了