Ends of covering 3-manifolds
覆盖 3 歧管的末端
基本信息
- 批准号:05640132
- 负责人:
- 金额:$ 0.96万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1993
- 资助国家:日本
- 起止时间:1993 至 1994
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Through the studies of ends of hyperbolic 3-manifolds, we obtained some results concering bounded cohomology.First, we showed, by using a certain hyperbolic 3-manifold, that the naturally defined pseudonorm on the third bounded cohomology H^3_(Z*Z ; R) is not a norm. As a corollary to this result, it is shown that, for any group G admitting a surjective homomorphism f : G*Z*Z,the pseudonorm on H^3_(G ; R) is not a norm.Next, we presented a rigidity theorem of certain hyperbolic 3-manifolds of infinite volume. Let SIGMA_g be a closed, connected, orientable surface of genus g>1. For any hyperbolic 3-manifold M homotopy-equivalent to SIGMA_g, the volume of M is infinite. Here, we consider the case where M has no geometrically finite ends, that is, M is doubly-degenerated. If the infimum inj(M) of injectivity radii at all points in M is positive, then by Minsky's Ending Lamination Theorem, the hyperbolic structure on M is determined only by its ending laminations. For any such M,M' with inj(M) >0, inj(M') > 0, we presented a condition equivalent to that M and M' have the same ending laminations in terms of the fundamental classes [omega_M], [omega_<M'>] defined as elements of H^3_(SIGMA_g ; R). Though [omega_M] = [omega_<M'>] is a sufficient condition for M isometric to M', we proved that a (formaly) weaker condition can be a necessary and sufficient condition for that.Furthermore, by using R.Canary's Covering Theorem, we showed that a topologically tame Kleinian group G is geometrically finite if and only if the funtametal class of G in H^3_(G ; R) is zero. As an application, we proved that, for any group G with a surjevtive homomorphism f : G*Z*Z,the dimension of H^3_(G ; R) is the cardinarity of continuum.
通过对双曲3-流形端点的研究,我们得到了一些关于有界上同调的结果:首先,我们利用某个双曲3-流形证明了第三有界上同调H ^3_(Z*Z ; R)上自然定义的端点不是范数;作为这一结果的推论,证明了对任何允许满同态f:G*Z*Z的群G,H^3_(G ; R)上的范数不是范数.设SIGMA_g是亏格g>1的闭连通可定向曲面.对于任意与SIGMA_g同伦等价的双曲3-流形M,M的体积是无穷大的.这里,我们考虑M没有几何有限端点的情况,即M是双重退化的。如果M上所有点的内射半径的下确界inj(M)都是正的,则根据Minsky的终结层定理,M上的双曲结构仅由它的终结层决定。对于任意这样的M,M',其中inj(M)>0,inj(M')> 0,我们给出了一个等价的条件,即M和M'具有相同的以H ^3_(SIGMA_g ; R)中元素定义的基本类[omega_M],[omega_<M'>]表示的终止层。虽然[omega_M] = [omega_<M '>]是M等距于M'的充分条件,但我们证明了一个(形式上)较弱的条件也可以是M等距于M '的充分必要条件,并利用R.Canary的覆盖定理证明了拓扑驯服的Kleinian群G是几何有限的当且仅当G在H^3_(G ; R)中的基金属类为零.作为应用,我们证明了对任意满同态为f:G*Z*Z的群G,H^3_(G ; R)的维数是连续统的基数。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Teruhiko Soma: "A rigidity theorem for Haken manifolds" Math. Proc. Cambridse Phil. Soc. (発表予定).
Teruhiko Soma:“Haken 流形的刚性定理”,Cambridse Phil。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Teruhiko Soma: "A rigidity theorem for Haken manifolds" Math. Proc. Cambridge Phil. Soc.(to appear).
Teruhiko Soma:“哈肯流形的刚性定理”数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Teruhiko Soma: "Covering 3‐manifolds with almost compact interior" Quart.J.Math.Oxford. 44. 345-353 (1993)
Teruhiko Soma:“用几乎紧凑的内部覆盖 3 个流形”Quart.J.Math.Oxford 44. 345-353 (1993)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Teruhiko Soma: "Equivariant almost homeomorphic maps between S^1 and S^2" Proc. Amer. Math. Soc.(発表予定).
Teruhiko Soma:“S^1 和 S^2 之间的等变几乎同胚映射”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Teruhiko Soma: "Rotation of spatial graphs" Topology Applications. (to appear).
Teruhiko Soma:“空间图的旋转”拓扑应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SOMA Teruhiko其他文献
SOMA Teruhiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SOMA Teruhiko', 18)}}的其他基金
Uniform research of topological Kleinian groups by using geometric limits
利用几何极限的拓扑克莱因群的一致研究
- 批准号:
22540092 - 财政年份:2010
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of 3-manifolds by topological and hyperbolic geometric method
3-流形的拓扑和双曲几何方法研究
- 批准号:
18540097 - 财政年份:2006
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric and topological rigidity theorem for 3-manifolds
三流形的几何和拓扑刚性定理
- 批准号:
12640092 - 财政年份:2000
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bounded cohomology and 3-dimensional hyperbolic geometry
有界上同调和 3 维双曲几何
- 批准号:
07640140 - 财政年份:1995
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




