Bounded cohomology and 3-dimensional hyperbolic geometry
有界上同调和 3 维双曲几何
基本信息
- 批准号:07640140
- 负责人:
- 金额:$ 1.22万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1997
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let H^3_ (SIGMA ; R) be the third bounded cohomology of a closed, orientable surface SIGMA of genus g>1. The head investigator proved that the pseudonorm ||・|| on H^3_ (SIGMA ; R) is not a norm by relying on the results in S.Matsumoto-S.Morita (1985). Moreover, by using a similar argument, we construct examples of the n-th bounded cohomology whose pseudonorm is not a norm for any n <greater than or equal> 5. They are the first examples showing that there exist bounded cohomologies without norm.For a topological space X,the subspace consisting of elements alpha of the k-th bounded cohomology H^k_ (X ; R) with ||alpha||=0 is called the zero-norm subspace of H^k_ (X ; R) and denoted by N^k (X). In this research, we investigated the third zero-norm subspace N^3 (SIGMA). The head investigator constructed non-trivial elements of N^3 (SIGMA) practically by using both a hyperbolic metric and a singular euclidean metric on SIGMA*R,where the euclidean metric is defined by using a measured lamination associated to a pseudo-Anosov automorphism of SIGMA. As an application of this practical construction, it was shown that the dimension of R-vector space N^3 (SIGMA) is the cardinality of continuum.Throughout the research of bounded cohomology, the head investigator obtained the notion of microchip decompositions on complexes consisting of hyperbolic 3-simplices. Later, it was turned out that the notion is useful also in investigating non-zero degree maps between 3-manifolds. In particular, if a non-zero degree map f : M*N from a closed 3-manifold to a hyperbolic 3-manifolds is given, one can define the structurc of a complex on M consisting of hyperbolic 3-simplices by using the hyperbolic structure on N.By using microchip decompositions on such complexes, it was proved that the number ofhyperbolic 3-manifolds admitting non-zero degree maps from a fixed M is finite.
设H^3_(SIGMA ; R)是亏格g>1的闭可定向曲面SIGMA的第三有界上同调。首席调查员证明,||·||在H ^3_(SIGMA ; R)上的σ_(σ_)不依赖于S.Matsumoto-S.Morita(1985))的结果。此外,通过使用类似的参数,我们构造的例子的n阶有界上同调的,其范数是不是一个规范的任何n <greater than or equal>5。它们是第一个证明存在无范数有界上同调的例子。对于拓扑空间X,由第k个有界上同调H^k_(X ; R)的元素α组成的子空间,||阿尔法||=0称为H^k_(X ; R)的零范数子空间,记为N^k(X)。在本研究中,我们研究了第三个零范数子空间N^3(SIGMA)。首席研究员实际上通过使用SIGMA*R上的双曲度量和奇异欧几里德度量来构造N^3(SIGMA)的非平凡元素,其中欧几里德度量通过使用与SIGMA的伪Anosov自同构相关联的测量层来定义。作为这一实际构造的应用,证明了R-向量空间N^3(SIGMA)的维数是连续统的基数。通过对有界上同调的研究,首席研究员得到了由双曲3-单形组成的复形的微片分解的概念。后来,事实证明,这个概念在研究3-流形之间的非零度映射时也很有用。特别地,如果给定一个从闭3-流形到双曲3-流形的非零度映射f:M*N,则可以利用N上的双曲结构定义M上由双曲3-单形组成的复形的结构.利用这类复形的微片分解,证明了允许来自固定M的非零度映射的双曲3-流形的个数是有限的.
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Teruhiko Soma: "Existence of non-Banach bounded cohomology" Topology. (発表予定).
Teruhiko Soma:“非巴纳赫有界上同调的存在”拓扑(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Teruhiko Soma: "The zero-norm subspace of bounded cohomology" Comment.Math.Helv.72・4. 582-592 (1997)
相马辉彦:“有界上同调的零范数子空间”Comment.Math.Helv.72・4(1997)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Michihiko Fujii,Teruhiko Soma: "Totally geodesic boundaries are dense in the moduli space" J.Math.Soc.Japan. (発表予定).
Michihiko Fujii、Teruhiko Soma:“模空间中的完全测地线边界是密集的”J.Math.Soc.Japan(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Teruhiko Soma: "Existence of non-Banach bounded cohomology" Topology. 37. 179-193 (1998)
Teruhiko Soma:“非 Banach 有界上同调的存在性”拓扑。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Michihiko Fujii, Teruhiko Soma: "Totally geodesic boundaries are dense in the moduli space" J.Math.Soc.Japan. 49. 589-601 (1997)
Michihiko Fujii、Teruhiko Soma:“模空间中的完全测地线边界是密集的”J.Math.Soc.Japan。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SOMA Teruhiko其他文献
SOMA Teruhiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SOMA Teruhiko', 18)}}的其他基金
Uniform research of topological Kleinian groups by using geometric limits
利用几何极限的拓扑克莱因群的一致研究
- 批准号:
22540092 - 财政年份:2010
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of 3-manifolds by topological and hyperbolic geometric method
3-流形的拓扑和双曲几何方法研究
- 批准号:
18540097 - 财政年份:2006
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric and topological rigidity theorem for 3-manifolds
三流形的几何和拓扑刚性定理
- 批准号:
12640092 - 财政年份:2000
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ends of covering 3-manifolds
覆盖 3 歧管的末端
- 批准号:
05640132 - 财政年份:1993
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)














{{item.name}}会员




