Geometry of twistor spaces
扭量空间的几何
基本信息
- 批准号:12440019
- 负责人:
- 金额:$ 5.82万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. We have solved a conjecture of Joyce to the effect that (S^1 × S^1)-invariant self-dual metrics are essentially those constructed by Joyce, by determining the structure of the associated twistor space in detail.2. For a twistor space Z with algebraic dimension a(Z) = 2 we have shown that either M 〜 mP^2 or M 〜 (S^1 × S^3)#mP^2 for some of its finite unramified covering M^^〜. A similar result is obtained also for the case a(Z) = 1 and of +-type.3. For a twistor space Z with a(Z) = 2 corresponding to 4P^2 we have done a detailed study of the structure of its algebraic reduction. Honda obtained significant results on the structure and existence of twistor spaces admitting an S^1-action (not necessarily semifree) in the case M = 3P^2, 4P^2.4. For any m【greater than or equal】5, by considering the deformations of Joyce twistor spaces we have obtained the first examples of a twistor space with a = 2. When m = 4 the construction gives also examples which are different from those constructed by Campana-Kreussler.5. The Case M = (S^1 × S^3)#mP^2 of +-type: When m = 0 we have completely determined the structure of algebraic reduction of Z. Whe m > 0, we have solved affirmatively the a(Z) = 1-conjecture by LeBrun for the LeBrun families which are the unique explicit example in this case. Meantime, we get a detailed description of the structure of Z.
1. 通过详细确定相关扭转空间的结构,我们解决了Joyce的一个猜想,即(S^1 × S^1)不变自对偶度量本质上是由Joyce构造的。对于代数维数为a(Z) = 2的扭曲空间Z,我们证明了M ~ mP^2或M ~ (S^1 × S^3)#mP^2对于它的有限未分叉覆盖M^^ ~。对于A (Z) = 1且+-type.3的情况,也得到了类似的结果。对于a(Z) = 2对应4P^2的扭转空间Z,我们详细研究了其代数约简的结构。Honda在M = 3P^2, 4P^2.4的情况下,得到了具有S^1作用(不一定是半自由)的扭转空间的结构和存在性的重要结果。对于任意m【大于或等于】5,通过考虑乔伊斯扭曲空间的变形,我们得到了a = 2的扭曲空间的第一个例子。当m = 4时,该结构也给出了不同于campana - kreussler构造的例子。当M = 0时,我们完全确定了Z的代数约简结构。当M = 0时,我们肯定地解决了LeBrun族的a(Z) = 1猜想,这是这种情况下唯一的显式例子。同时,对Z的结构进行了详细的描述。
项目成果
期刊论文数量(254)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Fujiki: "Topology of compact self-dual manifolds whose twistar space is of positive algebraic dimension"J.Math.Soc. Japan. 54. 587-608 (2002)
A.Fujiki:“扭星空间具有正代数维数的紧致自对偶流形的拓扑”J.Math.Soc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Namikawa: "Projectivity criterion of Moishezon spaces and density of projective symplectic varieties"International J.Math.. 13. 125-135 (2002)
Y.Namikawa:“Moishezon 空间的射影准则和射影辛簇的密度”International J.Math.. 13. 125-135 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Namikawa: "Deformation theory of singular symplectic n-folds"Mathematisches Annalen. 319. 597-623 (2001)
Y.Namikawa:“奇异辛 n 折叠的变形理论”数学年鉴。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Namikawa: "Stratified local moduli of Calabi-Yau threefold"Topology. (to appear).
Y.Namikawa:“卡拉比-丘三重分层局部模量”拓扑。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Ohama: "Classical Solutions of Schlesinger equations and Twistor Theory"CRM Proceeding and Lecture Notes. 31. 51-58 (2002)
Y.Ohama:“施莱辛格方程和扭转理论的经典解”CRM 论文集和讲义。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUJIKI Akira其他文献
FUJIKI Akira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUJIKI Akira', 18)}}的其他基金
Geometry of twistor spaces
扭量空间的几何
- 批准号:
22340012 - 财政年份:2010
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry of twistor spaces
扭量空间的几何
- 批准号:
18340017 - 财政年份:2006
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry of twistor spaces
扭量空间的几何
- 批准号:
15340022 - 财政年份:2003
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry of twistor space
扭量空间的几何
- 批准号:
10440020 - 财政年份:1998
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of the stability theory of polarized compact Kahler manifolds
极化紧致卡勒流形稳定性理论研究
- 批准号:
02640046 - 财政年份:1990
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Myocardial anisotropy and cardiac arrhythmias
心肌各向异性和心律失常
- 批准号:
02807086 - 财政年份:1990
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Algebraic-geometrical and arithmetical study of a quotient space of a Riemannian symmetric space by an arithmetic group
通过算术群对黎曼对称空间的商空间进行代数几何和算术研究
- 批准号:
60540038 - 财政年份:1985
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)