Algebraic Analysis of Quantum Integrable Systems
量子可积系统的代数分析
基本信息
- 批准号:12440039
- 负责人:
- 金额:$ 3.2万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solvable Lattice Models We constructed a free field realization of the ABF models in regime II and the higher spin face models, and a a new type of free field realization for the eight-vertex model at a special value of the parameters.Theory of crystals and applications We established an isomorphism between crystals constructed from inhomogeneous paths and crystals for tensor products of integrable highest weight modules of quantum affine algebras, thereby obtaining fermionic character formulas in many cases. We studied the Bethe equation in the limit q = 0 and derived a new representation for weight multiplicities for tensor products of Kirillov-Reshetikhin modules. As another application, we constructed soliton cellular automata from affine crystals, and described time evlolutions and scattering rules in terms of combinatorial R. We further derived a piecewise-linear formula for the latter and showed that its de-ultra-discretizatiohn affords the non-autonomous KP equations.Conformal field theory We considered a vertex operator algebra associated with the Virasoro minimal series M(3, p), derived a fermionic formula for the character of the subspace generated by an abelian current, and obtained a monomial basis thereof. We introduced a differential ideal of symmetric polynomials spanned by Jack polynomials with a negative rational value of the parameter. In a special case it coincides with the set of all correlation functions for the current mentioned above. We also obtained a bosonic character formula for a similar subspace of integrable representations of s1.
我们构造了ABF模型在状态II和高自旋面模型中的自由场实现,以及八顶点模型在特殊参数值下的一种新型自由场实现。我们建立了由非齐次路径构成的晶体与量子仿射代数可积最高权模张量积晶体之间的同构关系,从而得到了许多情况下的费米子特征公式。研究了极限q = 0条件下的Bethe方程,导出了Kirillov-Reshetikhin模张量积权重的新表示。作为另一个应用,我们从仿射晶体中构造了孤子元胞自动机,并用组合r描述了时间演化和散射规则。我们进一步推导了后者的分段线性公式,并证明了它的去超离散性提供了非自治KP方程。考虑了与Virasoro最小级数M(3, p)相关的顶点算子代数,导出了由阿贝尔电流生成的子空间特征的费米子公式,并得到了其单项式基。我们引入了由参数为负有理的杰克多项式张成的对称多项式的微分理想。在特殊情况下,它与上述电流的所有相关函数的集合一致。我们还得到了s1的可积表示的类似子空间的玻色子特征公式。
项目成果
期刊论文数量(104)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Kuniba: "The Bethe equation at q=0, the Mobius inversion formula and weight multiplicities I the sl (2) case"Prog. in Math.. 191. 185-216 (2000)
A.Kuniba:“q=0 时的贝特方程、莫比乌斯反演公式和权重重数 I sl (2) 情况”Prog。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A. Kuniba: "Difference L operators related to q-characters"J. Phys. A. Math. and Gen.. (to appear).
A. Kuniba:“与 q 字符相关的差分 L 运算符”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Kuniba: "The canonical sdution of the Q-system and the Kirillov-Resherikhin conjecture"Commun. Math. Phys.. (to appear).
A.Kuniba:“Q 系统的规范研究和基里洛夫-列谢里欣猜想”Commun。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
G.Hatayama,G.Koga,Y.Kuniba,A.Okado and T.Tokagi: "Finite crystals and paths"Adv.Stud.in Pure Math.. 28. 113-132 (2000)
G.Hatayama、G.Koga、Y.Kuniba、A.Okado 和 T.Tokagi:“有限晶体和路径”Adv.Stud.in Pure Math.. 28. 113-132 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
G. Hatayama: "Finite crystals and paths"Adv. Stud. in Pure Math. 28. 113-132 (2000)
G. Hatayama:“有限的晶体和路径”Adv。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JIMBO Michio其他文献
JIMBO Michio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JIMBO Michio', 18)}}的其他基金
Quantum toroidal algebras and quantum integrable systems
量子环形代数和量子可积系统
- 批准号:
19K03549 - 财政年份:2019
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of quantum toroidal algebras to integrable systems
量子环形代数在可积系统中的应用
- 批准号:
16K05183 - 财政年份:2016
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic analysis of integrable models
可积模型的代数分析
- 批准号:
23340039 - 财政年份:2011
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Algebro-analytic study of quantum integrable systems
量子可积系统的代数分析研究
- 批准号:
20340027 - 财政年份:2008
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on uantum integrable systems : algebraic structure and correlation functions
量子可积系统的研究:代数结构和相关函数
- 批准号:
18340035 - 财政年份:2006
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Algebraic Structure of Integrable Field Theories
可积场论的代数结构
- 批准号:
16340033 - 财政年份:2004
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
COINVARIANTS IN CONFORMAL FIELDTHEORY
共形场理论中的协变量
- 批准号:
14340040 - 财政年份:2002
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Solvable Lattice Models and Elliptic Quantum Groups
可解的格子模型和椭圆量子群
- 批准号:
10440042 - 财政年份:1998
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Structure and symmetries of integrable systems
可积系统的结构和对称性
- 批准号:
05402001 - 财政年份:1993
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for General Scientific Research (A)