STatistical Methods for OPtimal Basket Trial Designs fOR Precision Medicine – a General, Customizable TOolbox (STOP OR GO)
精准医学最佳篮子试验设计的统计方法——通用、可定制的工具箱(停止或继续)
基本信息
- 批准号:459934212
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The demand for new treatments in precision medicine remains constantly high. New findings suggest incorporating knowledge on molecular profiling by targeting aberrant genes or pathways right from the beginning of drug development. Therefore, the development of new study designs for early clinical phases is of urgent need. A relatively new approach are so-called “Basket” designs. Basket trials are based on the idea of combining several substudies according to molecular profiling. The individual substudies thereby share a common design. The primary endpoint is usually binary. Other design options might vary, for example the number of study arms per substudy. Basket trials are designed to incorporate interim modification so they include adaptive design elements. By this, they have the chance to increase the efficiency of drug development and to allow developing individualized treatment approaches. However, Basket designs also come along with major statistical challenges including a more difficult sample size planning, multiple testing, interim analyses, the choice of optimal futility boundaries, definition of adequate go/no go criteria and rules for incorporating information exchange (“borrowing”) between different substudies.The global objective of this proposal is to develop optimal Basket designs, which incorporate isolated or combined adaptive elements such that • Clustering/ borrowing, • Futility stopping at interim, • Sample size recalculation. To do so, the proposal divides into three work packages:1. Within the first work package, we aim to improve and extend by reformulating published Basket designs as optimization problems with constraints, which shall be solved analytically. This approach allows 1) to find the optimal parameter solution for a given design and 2) to compare different Basket designs against each other.2. Within the second work package, we aim to develop new adaptive design elements, which are justified by thorough methodologic considerations such that specific performance requirements are met. 3. In a final work package, we will combine the developed constrained optimization problems with the newly adaptive design elements. Subsequently, we will implement a corresponding validated R package with graphical user interface on R CRAN, which allows to design an optimal customizable Basket trial by combining arbitrary adaptive design elements. The results of this project will help to establish efficient novel Basket trials designs in precision medicine. Application of the new designs in practice is supported by the developed validated, freely-available and easy to use software solution.
对精准医疗新疗法的需求仍然很高。新的研究结果表明,从药物开发的一开始就通过靶向异常基因或途径来整合分子特征分析的知识。因此,迫切需要为早期临床阶段开发新的研究设计。一种相对较新的方法是所谓的“篮式”设计。篮式试验基于根据分子谱分析将几个亚组研究相结合的想法。因此,各个子研究具有共同的设计。主要终点通常是二元的。其他设计选项可能会有所不同,例如每个子研究的研究组数量。网篮试模设计为包含临时修改,因此包含适应性设计元素。通过这种方式,他们有机会提高药物开发的效率,并允许开发个性化的治疗方法。然而,篮式设计也沿着主要的统计学挑战,包括更困难的样本量规划、多重检验、中期分析、最佳无效边界的选择、充分的通过/不通过标准的定义以及纳入信息交换的规则(“借用”)。本提案的总体目标是开发最佳篮子设计,其包含独立或组合的自适应元件,使得· 集群/借用,· 临时停止无效,· 样本量重新计算。为此,该提案分为三个工作包:1。 在第一个工作包中,我们的目标是通过将已发布的篮子设计重新表述为具有约束的优化问题来改进和扩展,这些问题应通过分析来解决。这种方法允许1)找到给定设计的最佳参数解决方案; 2)比较不同的篮子设计。 在第二个工作包,我们的目标是开发新的自适应设计元素,这是合理的彻底的方法论考虑,以满足特定的性能要求。3. 在最后的工作包,我们将联合收割机开发的约束优化问题与新的自适应设计元素。随后,我们将在R CRAN上实现一个相应的经过验证的具有图形用户界面的R包,它允许通过组合任意自适应设计元素来设计一个最佳的可定制篮子试验。该项目的结果将有助于在精准医学中建立有效的新型篮式试验设计。新设计在实践中的应用得到了已开发的经过验证、免费提供且易于使用的软件解决方案的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Meinhard Kieser, Ph.D.其他文献
Professor Dr. Meinhard Kieser, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Meinhard Kieser, Ph.D.', 18)}}的其他基金
Integrated Planning of Drug Development Programs
药物开发项目综合规划
- 批准号:
443177481 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grants
ORACLE II – Optimal Rules for Adaptive Designs with reCalculation of sampLE size
ORACLE II â 重新计算样本量的自适应设计的最佳规则
- 批准号:
387053251 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Integrated planning of pilot studies and confirmatory studies in clinical research
临床研究中试点研究和验证性研究的整合规划
- 批准号:
316802716 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Methods for planning and analysis of clinical phase II trials in oncology
肿瘤学临床 II 期试验的计划和分析方法
- 批准号:
151327791 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Planning and ANalyzing OPTImal Clinical trials with Adaptive Design
使用自适应设计规划和分析最佳临床试验
- 批准号:
443177220 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Variational Optimal Transport Methods for Nonlinear Filtering
非线性滤波的变分最优传输方法
- 批准号:
2318977 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Liver Fibrosis: Leveraging Novel Statistical Methods to Determine Optimal Screening Strategy for People Living with Type 2 Diabetes
肝纤维化:利用新的统计方法确定 2 型糖尿病患者的最佳筛查策略
- 批准号:
488421 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Analysis of Nna1's genetic changes and explore for optimal treatment methods
分析Nna1基因变化并探索最佳治疗方法
- 批准号:
23K06318 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the reliability of computational algorithms in optimal control methods using highly expressive non-differentiable functions
使用高表达不可微函数的最优控制方法中计算算法的可靠性
- 批准号:
23K13359 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Computational Methods for Optimal Transport via Fluid Flows
合作研究:流体流动优化传输的计算方法
- 批准号:
2313454 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Identifying optimal primary care models for adults with intellectual and developmental disabilities in Ontario: a mixed methods study
确定安大略省智力和发育障碍成年人的最佳初级保健模式:混合方法研究
- 批准号:
489554 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Machine Learning Methods Predicting Optimal Mechanical Properties of Carbon Fibre Thermoplastics
预测碳纤维热塑性塑料最佳机械性能的机器学习方法
- 批准号:
546625-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Advanced Optimal Control Methods for Non-Linear and Distributed-Parameter Processes
非线性和分布式参数过程的先进优化控制方法
- 批准号:
RGPIN-2020-04352 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Improved Numerical Methods for Solving Optimal Control Problems with Nonsmooth and Singular Solutions
解决具有非光滑和奇异解的最优控制问题的改进数值方法
- 批准号:
2031213 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant