Development of Knowledge Discovery Systems by using the Hierarchical Bayesian Time Series Models
使用分层贝叶斯时间序列模型开发知识发现系统
基本信息
- 批准号:12558023
- 负责人:
- 金额:$ 6.08万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, we dealt with a removal of the artificial noises that is a stumbling block in the effort to perform an automatic procedure for knowledge discovery from a large-scale time series data. More specifically, we focused on the problems to exclude a rapid change in a trend (background mean) due to changes in sensitivity of the observation instruments, and to identify an outlier. The self-organizing state space model which belongs to the hierarchical Bayesian model has been employed to solve these problems. It is capable of estimating the trend component even if the noise component in a time series shows a time-dependent structure ; ex., its variance depends on time. The program that we developed allows us to detect the tune-dependent mean structure automatically for a large-scale time series datasets. We hope this program will open a door for us to re-analyze huge accumulated dataset that has not been examined in detail owing to an apparent signal contamination by various noises. We have already post this program with an explanation for usage on Web.http://tswww.ism.ac.jp/higuchi/index e/Soft/index.htm
在这个项目中,我们致力于消除人工噪声,这是从大规模时间序列数据中执行自动知识发现过程的绊脚石。更具体地说,我们关注的问题是排除由于观测仪器灵敏度变化而导致的趋势(背景平均值)的快速变化,并识别异常值。属于分层贝叶斯模型的自组织状态空间模型被用来解决这些问题。即使时间序列中的噪声成分呈现出与时间相关的结构,它也能够估计趋势成分;例如,它的方差取决于时间。我们开发的程序允许我们自动检测大规模时间序列数据集的依赖于调的平均结构。我们希望这个程序将为我们打开一扇门,让我们重新分析大量积累的数据集,这些数据集由于各种噪声的明显信号污染而尚未经过详细检查。我们已经在 Web 上发布了该程序及其使用说明。http://tswww.ism.ac.jp/higuchi/index e/Soft/index.htm
项目成果
期刊论文数量(46)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Ikoma, N.Ichimura, T Higuchi, H.Maeda: "Particle Filter Based Method for Maneuvering Target Tracking"IEEE International Workshop on Intelligent Signal Processing. 3-8 (2001)
T.Ikoma、N.Ichimura、T Higuchi、H.Maeda:“基于粒子滤波器的机动目标跟踪方法”IEEE 国际智能信号处理研讨会。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
G.Ueno,N.Nakamura,T.Higuchi,T,Tsuchiya,S.Machida,and T.Araki: "Application of Multivariate Maxwellian Mixture Model to Plasma Velocity Distribution Function"The proceedings of The Second International Conference on Discovery Science. AI series 1967. 197-2
G.Ueno、N.Nakamura、T.Higuchi、T、Tsuchiya、S.Machida 和 T.Araki:“多元麦克斯韦混合模型在等离子体速度分布函数中的应用”第二届国际发现科学会议论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Kamiyama, T.Higuchi: "Non-linear filtering approach to an adjustment of non-uniform sampling locations in spatial datasets"Proceedings of 2003 IEEE Workshop on Statistical Signal Processing. 181-184 (2003)
M.Kamiyama、T.Higuchi:“调整空间数据集中非均匀采样位置的非线性过滤方法”2003 年 IEEE 统计信号处理研讨会论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Nagao, T.Iyemori, T.Higuchi, T.Araki: "Lower Mantle Conductivity Anomalies Estimated from Geomagnetic Jerks"Journal of Geophysical Research-Solid Earth. (印刷中).
H.Nagao、T.Iyemori、T.Higuchi、T.Araki:“根据地磁急动估计的下地幔电导率异常”地球物理研究杂志-固体地球(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
G.Kitagawa, T.Higuchi, F.N.Kondo: "Smoothness Prior Approach to Explore Mean Structure in Large Time Series"Theoretical Computer Science. (印刷中). (2002)
G.Kitakawa、T.Higuchi、F.N.Kondo:“探索大型时间序列中的平均结构的平滑先验方法”理论计算机科学(2002 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIGUCHI Tomoyuki其他文献
HIGUCHI Tomoyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIGUCHI Tomoyuki', 18)}}的其他基金
Potential of ark clam as a processed food with beneficial effects on iron-deficiency anemia
方舟蛤作为加工食品的潜力对缺铁性贫血有益
- 批准号:
20K02341 - 财政年份:2020
- 资助金额:
$ 6.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical platform for creating the emulator-based design science as the foundation of next-generation manufacturing technology
用于创建基于仿真器的设计科学作为下一代制造技术基础的数学平台
- 批准号:
15K11999 - 财政年份:2015
- 资助金额:
$ 6.08万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study on Nonlinear Filtering Method for Streaming Computing under Edge Heavy Data Environment
边缘重数据环境下流计算非线性滤波方法研究
- 批准号:
26280010 - 财政年份:2014
- 资助金额:
$ 6.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on advancement of computer-intensive methods for statistical estimations along with Graphical Processing Units and development of application software
研究计算机密集型统计估计方法的进展以及图形处理单元和应用软件的开发
- 批准号:
23300108 - 财政年份:2011
- 资助金额:
$ 6.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on information fusion methods for multiple genomic data sources with heterogeneity based on hierarchical statistical modeling
基于层次统计模型的多异质基因组数据源信息融合方法研究
- 批准号:
17200020 - 财政年份:2005
- 资助金额:
$ 6.08万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Research on an integration methodology for combining many competing models with a dynamical mixing and/or switching
研究将多个竞争模型与动态混合和/或切换相结合的集成方法
- 批准号:
14208025 - 财政年份:2002
- 资助金额:
$ 6.08万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Research on a systematic analysis of information on GPS array data
GPS阵列数据信息系统分析研究
- 批准号:
12680322 - 财政年份:2000
- 资助金额:
$ 6.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
SENSORBEES: Sensorbees are ENhanced Self-ORganizing Bio-hybrids for Ecological and Environmental Surveillance
传感器蜂:传感器蜂是用于生态和环境监测的增强型自组织生物杂交体
- 批准号:
10109956 - 财政年份:2024
- 资助金额:
$ 6.08万 - 项目类别:
EU-Funded
Self-Organizing Wave Formation in Quasi-2D Shear Turbulence
准二维剪切湍流中的自组织波形成
- 批准号:
24K07313 - 财政年份:2024
- 资助金额:
$ 6.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Self-organizing synthetic human lungs on microchips to fight infection by RSV
微芯片上的自组织合成人肺可抵抗 RSV 感染
- 批准号:
10698767 - 财政年份:2023
- 资助金额:
$ 6.08万 - 项目类别:
MSA: Self-organizing principles for upscaling ecosystem water and heterotrophic carbon fluxes
MSA:扩大生态系统水和异养碳通量的自组织原理
- 批准号:
2213630 - 财政年份:2022
- 资助金额:
$ 6.08万 - 项目类别:
Standard Grant
Development of bio-pulsating ureter using self-organizing collagen tube
利用自组织胶原管开发生物脉动输尿管
- 批准号:
22H03928 - 财政年份:2022
- 资助金额:
$ 6.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Biomimetic dynamic mechanobiology: developing control strategies for self-organizing microengineered tissues
仿生动态力学生物学:开发自组织微工程组织的控制策略
- 批准号:
RGPIN-2022-05165 - 财政年份:2022
- 资助金额:
$ 6.08万 - 项目类别:
Discovery Grants Program - Individual
Self-organizing fluids for active building facades
用于主动建筑外墙的自组织流体
- 批准号:
568492-2021 - 财政年份:2021
- 资助金额:
$ 6.08万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Collaborative Research: AF: Medium: Markov Chain Algorithms for Problems from Computer Science, Statistical Physics and Self-Organizing Particle Systems
合作研究:AF:中:计算机科学、统计物理和自组织粒子系统问题的马尔可夫链算法
- 批准号:
2106917 - 财政年份:2021
- 资助金额:
$ 6.08万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Markov Chain Algorithms for Problems from Computer Science, Statistical Physics and Self-Organizing Particle Systems
合作研究:AF:中:计算机科学、统计物理和自组织粒子系统问题的马尔可夫链算法
- 批准号:
2106687 - 财政年份:2021
- 资助金额:
$ 6.08万 - 项目类别:
Continuing Grant
Large-scale Data Harvesting with Self-organizing IoT Networks
通过自组织物联网网络进行大规模数据收集
- 批准号:
562150-2021 - 财政年份:2021
- 资助金额:
$ 6.08万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




