Biomimetic dynamic mechanobiology: developing control strategies for self-organizing microengineered tissues
仿生动态力学生物学:开发自组织微工程组织的控制策略
基本信息
- 批准号:RGPIN-2022-05165
- 负责人:
- 金额:$ 4.01万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nature of the work: The process by which we grow and differentiate from homogenous embryos into precisely-sculpted, functional tissues and organs is a manufacturing marvel that is far more precise, robust, and adaptive than current tissue engineering process control strategies. Mechanical forces are process variables that must play a central role in tissue formation during development, and in tissue disruption during disease; but the tools to measure, recreate, and manipulate these potent stimuli have lagged far behind the explosive growth of reductionist molecular biology techniques. The long-term goals of this research program are to leverage microfabrication, materials design, and stem cell tissue engineering to (1) understand the co-evolution of mechanics and biology as tissues develop and decay; and (2) exploit these insights to engineer biological process systems of value to society. Anticipated outcomes. Over the next five years, we will explore mechanical plasticity as a critical regulator of cell fate and function, and develop tools to measure and manipulate these parameters in native and engineered cultures. We anticipate developing fundamental strategies to understand the mechanical relationship between cells and their environment, with initial applications in organoid differentiation and control. Though broadly applicable to several problems in microscale tissue engineering for human health, we will then apply this paradigm in a focused effort to develop microengineered strategies to reduce the costs of sustainable materials development. Specifically, we will investigate the plastic-to-elastic transition driven by a colonizing fungal network in granular substrates, which has been proposed as a sustainable alternative material for many industries, but remains economically challenging to adopt broadly. This design cycle should hence provide creative and fundamentally-grounded approaches to biological engineering challenges, and we specifically envision the fundamental knowledge and experience gained through this interdisciplinary approach to impact the fundamental research, biomanufacturing, and agricultural industries. Furthermore, this fundamental knowledge will lay the preliminary groundwork to address critical healthcare challenges in drug screening, regenerative medicine, and diagnostics. Benefits to Canada. In addition to the scientific research outcomes described and the potential innovative applications to industry, this proposed work will train 3 doctoral, 3 masters, and 9 undergraduate researchers at the highly interdisciplinary interface between bioprocessing, mechanics, tissue engineering, and sustainable development. Given the pressing need for creative and sustainable approaches to manufacturing, the proposed training environment and program will position trainees ahead of the curve to invent, develop, and deliver creative strategies to effect positive change in a future-focused society.
工作性质:我们从同质胚胎生长和分化为精确造型的功能性组织和器官的过程是一个制造奇迹,比目前的组织工程过程控制策略更精确,更强大,更适应。机械力是过程变量,在发育过程中的组织形成和疾病过程中的组织破坏中必须发挥核心作用;但是测量、重建和操纵这些有效刺激的工具远远落后于还原分子生物学技术的爆炸性增长。该研究计划的长期目标是利用微制造,材料设计和干细胞组织工程来(1)了解组织发育和衰变时力学和生物学的共同进化;以及(2)利用这些见解来设计对社会有价值的生物过程系统。 预期成果。在接下来的五年里,我们将探索机械可塑性作为细胞命运和功能的关键调节器,并开发工具来测量和操纵这些参数在本地和工程文化。我们期望开发基本策略来理解细胞与其环境之间的机械关系,并初步应用于类器官分化和控制。虽然广泛适用于人类健康的微尺度组织工程中的几个问题,我们将应用这种模式,集中精力开发微工程的策略,以降低可持续材料开发的成本。具体来说,我们将研究由颗粒状基质中的定殖真菌网络驱动的塑性到弹性的转变,该基质已被提议作为许多行业的可持续替代材料,但广泛采用仍然具有经济挑战性。因此,这个设计周期应该为生物工程挑战提供创造性和基础性的方法,我们特别设想通过这种跨学科方法获得的基础知识和经验,以影响基础研究,生物制造和农业产业。此外,这些基础知识将奠定初步基础,以解决药物筛选,再生医学和诊断方面的关键医疗挑战。对加拿大有利。除了所描述的科学研究成果和潜在的工业创新应用外,这项拟议的工作还将在生物加工,力学,组织工程和可持续发展之间的高度跨学科界面上培养3名博士,3名硕士和9名本科生研究人员。鉴于迫切需要创造性和可持续的制造方法,拟议的培训环境和计划将使受训者处于领先地位,以发明,开发和提供创造性的战略,从而在以未来为重点的社会中实现积极的变革。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Moraes, Christopher其他文献
Microscale 3D Collagen Cell Culture Assays in Conventional Flat-Bottom 384-Well Plates
- DOI:
10.1177/2211068214563793 - 发表时间:
2015-04-01 - 期刊:
- 影响因子:0
- 作者:
Leung, Brendan M.;Moraes, Christopher;Takayama, Shuichi - 通讯作者:
Takayama, Shuichi
Robust and Precise Wounding and Analysis of Engineered Contractile Tissues
- DOI:
10.1089/ten.tec.2019.0123 - 发表时间:
2019-09-20 - 期刊:
- 影响因子:3
- 作者:
Dubois, Sarah J.;Kalashnikov, Nikita;Moraes, Christopher - 通讯作者:
Moraes, Christopher
The case for cancer-associated fibroblasts: essential elements in cancer drug discovery?
- DOI:
10.4155/fdd-2021-0004 - 发表时间:
2022-01 - 期刊:
- 影响因子:0
- 作者:
Brewer, Gabrielle;Fortier, Anne-Marie;Park, Morag;Moraes, Christopher - 通讯作者:
Moraes, Christopher
Microfabricated arrays for high-throughput screening of cellular response to cyclic substrate deformation
- DOI:
10.1039/b914460a - 发表时间:
2010-01-01 - 期刊:
- 影响因子:6.1
- 作者:
Moraes, Christopher;Chen, Jan-Hung;Simmons, Craig A. - 通讯作者:
Simmons, Craig A.
Hydrogel Mechanics Influence the Growth and Development of Embedded Brain Organoids
- DOI:
10.1021/acsabm.1c01047 - 发表时间:
2021-12-22 - 期刊:
- 影响因子:4.7
- 作者:
de Camps, Camille Cassel;Aslani, Saba;Moraes, Christopher - 通讯作者:
Moraes, Christopher
Moraes, Christopher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Moraes, Christopher', 18)}}的其他基金
Advanced Cellular Microenvironments
先进的细胞微环境
- 批准号:
CRC-2020-00072 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Canada Research Chairs
Advanced Cellular Microenvironments
先进的细胞微环境
- 批准号:
CRC-2020-00072 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Canada Research Chairs
Single-cell mechanobiology: microengineered tools to study cell-matrix remodelling
单细胞力学生物学:研究细胞基质重塑的微工程工具
- 批准号:
RGPIN-2015-05512 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Single-cell mechanobiology: microengineered tools to study cell-matrix remodelling
单细胞力学生物学:研究细胞基质重塑的微工程工具
- 批准号:
RGPIN-2015-05512 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Advanced Cellular Microenvironments
先进的细胞微环境
- 批准号:
1000233113-2019 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Canada Research Chairs
Advanced Cellular Microenvironments
先进的细胞微环境
- 批准号:
1000230802-2015 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Canada Research Chairs
Advanced Cellular Microenvironments
先进的细胞微环境
- 批准号:
1000230802-2015 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Canada Research Chairs
Single-cell mechanobiology: microengineered tools to study cell-matrix remodelling
单细胞力学生物学:研究细胞基质重塑的微工程工具
- 批准号:
RGPIN-2015-05512 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Single-cell mechanobiology: microengineered tools to study cell-matrix remodelling
单细胞力学生物学:研究细胞基质重塑的微工程工具
- 批准号:
RGPIN-2015-05512 - 财政年份:2018
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Advanced Cellular Microenvironments
先进的细胞微环境
- 批准号:
1000230802-2015 - 财政年份:2018
- 资助金额:
$ 4.01万 - 项目类别:
Canada Research Chairs
相似国自然基金
Dynamic Credit Rating with Feedback Effects
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
静动态损伤问题的基面力元法及其在再生混凝土材料细观损伤分析中的应用
- 批准号:11172015
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
基于贝叶斯网络可靠度演进模型的城市雨水管网整体优化设计理论研究
- 批准号:51008191
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
美洲大蠊药材养殖及加工过程中化学成分动态变化与生物活性的相关性研究
- 批准号:81060329
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
星系恒星与气体的动力学演化
- 批准号:11073025
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
"锁住"的金属中心手性-手性笼络合物的动态CD光谱研究与应用开发
- 批准号:20973136
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
生物膜式反应器内复杂热物理参数动态场分布的多尺度实时测量方法研究
- 批准号:50876120
- 批准年份:2008
- 资助金额:36.0 万元
- 项目类别:面上项目
大规模动态网络环境中协同组操作一致性维护算法的正确性证明及其验证的研究
- 批准号:60803118
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
- 批准号:
EP/Y015878/1 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Fellowship
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
- 批准号:
MR/S034420/2 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Fellowship
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Research Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Continuing Grant
MCA: Cellular Responses to Thermal Stress in Antarctic Fishes: Dynamic Re-structuring of the Proteome in Extreme Stenotherms
MCA:南极鱼类对热应激的细胞反应:极端钝温鱼蛋白质组的动态重组
- 批准号:
2322117 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant