Toward to a generalization of modular invariance of vertex operator algebras into Hilbert type and Siegel type.
将顶点算子代数的模不变性推广到希尔伯特型和西格尔型。
基本信息
- 批准号:13440002
- 负责人:
- 金额:$ 9.09万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A concept of vertex operator algebras (VOA shortly) has originated from the moonshine vertex operator algebra, which was constructed in order to explain a mysterious relation (the moonshine conjecture) between Monster simple finite group (the largest sporadic finite simple group) and the classical elliptic modular function. Our purpose of this project is to clarify the modular invariance property of VOAs and extend it in multivarables. (1)We found a new construction of the moonshine vertex operator algebra by using Ising models, which offers a new modular invariance in multivariables. Compared with the original construction, our construction is easy and we can apply our construction for many other VOAs. (2)We have shown that C2-condition is enough to get, a modular invariance. Classically, the rationality (completely reducibility of modules) was considered to be more important than C2-condition, but our research has shown that we don't need rationality. (3)We construct an infinitely many VOAs with Euclidian Jordan Algebras as Griess algebras for any complex central charge c. So we construct a candidate of Siegel modular invariance. (4)We found an order formula to determine the automorphism group of VOAs. In our construction, Miyamoto involution plays an essential role and so we can easily get information about the centralizer of Involution in the full automorphism group. The question is if we can determine the automorphism group from it.
顶点算子代数(简称VOA)的概念起源于moonshine顶点算子代数,它是为了解释Monster简单有限群(最大的偶发有限群)与经典椭圆模函数之间的神秘关系(moonshine猜想)而构造的。我们这个项目的目的是澄清voa的模不变性,并在多变量中扩展它。(1)利用Ising模型构造了moonshine顶点算子代数,提供了一种新的多变量模不变性。与原来的施工相比,我们的施工简单,可以应用于许多其他的voc。(2)我们证明了c2条件足以得到模不变性。传统上,合理性(模块的完全可约性)被认为比c2条件更重要,但我们的研究表明,我们不需要合理性。(3)用欧几里得Jordan代数作为Griess代数构造了任意复杂中心电荷c的无限多voa,从而构造了一个候选的Siegel模不变性。(4)建立了一个确定voa自同构群的顺序公式。在我们的构造中,宫本对合起着至关重要的作用,因此我们可以很容易地得到关于对合在全自同构群中的中心化的信息。问题是我们能否从它确定自同构群。
项目成果
期刊论文数量(52)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
宮本雅彦: "Modular invariance of trace functions on VOAs in many variables"CRM Proceedings & Lecture Notes. 30. 131-138 (2001)
Masahiko Miyamoto:“许多变量中 VOA 上的迹函数的模不变性”CRM Proceedings & Lecture Notes 30. 131-138 (2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Uniform product of Ag,n(V) for an orbifold model V and G-twisted Zhu algebra
- DOI:10.1016/j.jalgebra.2003.11.017
- 发表时间:2001-12
- 期刊:
- 影响因子:0.9
- 作者:M. Miyamoto;K. Tanabe
- 通讯作者:M. Miyamoto;K. Tanabe
宮本雅彦: "Automorphism groups of Z_2 orbifold vertex operator algebras"Journal of Algebra. (to appear). (2003)
Masahiko Miyamoto:“Z_2 环折顶点算子代数的自同构群”(待发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
VOAs generated by two conformal vectors whose tau involutions generate S3
由两个共形向量生成的 VOA,其 tau 卷积生成 S3
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:宮本雅彦;田邊顕一朗;宮本雅彦;宮本雅彦;宮本雅彦
- 通讯作者:宮本雅彦
宮本雅彦: "VOAs generated by two conformal vectors whose tau involutions generate S_3"Journal of Algebra. 268. 653-671 (2003)
Masahiko Miyamoto:“由两个共形向量生成的 VOA,其 tau 卷积生成 S_3”《代数杂志》268. 653-671 (2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIYAMOTO Masahiko其他文献
MIYAMOTO Masahiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIYAMOTO Masahiko', 18)}}的其他基金
Strategy for orbifold conjecture for finite simple automorphism groups
有限简单自同构群的轨道猜想策略
- 批准号:
26610002 - 财政年份:2014
- 资助金额:
$ 9.09万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Research of Orbifold Theory on Vertex Operator Algebra
顶点算子代数轨道理论研究
- 批准号:
22654002 - 财政年份:2010
- 资助金额:
$ 9.09万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Detection of hidden symmetries in sporadic simple groups and vertex operator algebras
零星单群和顶点算子代数中隐藏对称性的检测
- 批准号:
17340001 - 财政年份:2005
- 资助金额:
$ 9.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A step to the perfect classification of 24dimensional meromorphic vertex operator algebras
迈向24维亚纯顶点算子代数完美分类的一步
- 批准号:
09440004 - 财政年份:1997
- 资助金额:
$ 9.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B).