Automorphic and Galois representations

自守和伽罗瓦表示

基本信息

  • 批准号:
    08640023
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 1997
  • 项目状态:
    已结题

项目摘要

I have studied the Iwasawa theory and Langlands conjecture over number fields, motivated by A.Wiles' work. Here the identification of deformation rings of Galois representations and Hecke algebras (called Mazur conjecture) plays a central role. I have shown that the Hecke algebra of GL (2) over a totally real field is a local complete intersection ring, and is identified with a universal deformation ring of a mod p modular representation.The essential step in the work is, that the freeness property of a cohomology group of a modular curve over a Hecke ring (used essentially in Taylor-Wiles work) is a consequence of axioms which are easier to verify. I have named the axioms Taylor-Wiles system, in analogy with Euler systems (I should note that a similar idea was found independently by F.Diamond). By constructing a Taylor-Wiles system by Shimura curves, the Mazur conjecture over general totally real fields is proved. By combining the result with a level optimization argument (the even degree case of the Mazur principle is most difficult), many two dimensional 1-adic Galois representations correspond to automorphic representations, thus verifying the Langlands correspondence in these cases. Especially, a generalization of Taniyama-Shimura conjecture is shown fairly generally. There is a report on this work, including recent results. The detail is distributed as a preprint (Deformation rings and Hecke algebras in the totally real case), submitted to a journal, and 2 other articles are under preparation.Even in case of reducible residual representations, it is shown that there are infinitely many reducible representations which satisfy the Mazur conjecture, when the totally real field is fixed.
受怀尔斯工作的启发,我研究了数域上的岩泽理论和朗兰兹猜想。在这里,伽罗瓦表示和Hecke代数(称为Mazur猜想)的变形环的识别起着核心作用。本文证明了全真实的域上GL(2)的Hecke代数是局部完备交环,并将其等同于模p模表示的泛变形环,其基本步骤是证明了Hecke环上模曲线的上同调群的自由性(主要用于Taylor-Wiles工作)是公理的一个推论,这些公理更易于验证。我把这些公理命名为泰勒-怀尔斯系统,与欧拉系统类似(我应该指出,F.戴蒙德独立地发现了类似的想法)。利用Shimura曲线构造Taylor-Wiles系统,证明了一般全真实的域上的Mazur猜想.通过将结果与水平优化参数相结合(Mazur原理的偶数度情况是最困难的),许多二维1-adic伽罗瓦表示对应于自守表示,从而验证了这些情况下的朗兰兹对应。特别地,对Taniyama-Shimura猜想作了较一般的推广。有一份关于这项工作的报告,包括最近的成果。详细分发作为预印本(变形环和Hecke代数在完全真实的情况下),提交给一个期刊,和2个其他文章正在筹备中。即使在可约剩余表示的情况下,它表明,有无穷多个可约表示满足Mazur猜想,当完全真实的领域是固定的。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Umemura, Hiroshi: "Galois theory of algebraic arl diflevential equatichs" Nagoya Math.J. 144. 1-58 (1996)
梅村浩:“代数arl微分方程的伽罗瓦理论”Nagoya Math.J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kitaoka, Yoshiyuki: "Finite arithmetic subgroups of GLn-V" Nagoya Math.J,. 146. 131-148 (1997)
Kitaoka, Yoshiyuki:“GLn-V 的有限算术子群”Nagoya Math.J,。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
藤原一宏: "モデュラー多様体と岩沢理論" 数理解析研究所考究録. 998. 1-19 (1997)
Kazuhiro Fujiwara:“模流形和岩泽理论”数学科学研究所杂志 998. 1-19 (1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Fujiwara, K.: "Rigid geometry, Lefsohoty-Verdier trace, formula, and Deligne's conjecture" Invent.Math.127. 489-533 (1997)
Fujiwara, K.:“刚性几何、Lefsohoty-Verdier 迹、公式和德利涅猜想”Invent.Math.127。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Fujiwara: "Rigiel geometry,Lefsihet2-Verdier traze formula and Delighe's conjectu" Inventiones Mathematicae. 127. (1997)
K.Fujiwara:“Rigiel几何,Lefsihet2-Verdier traze公式和Delighe猜想”Mathematicae发明。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FUJIWARA Kazuhiro其他文献

FUJIWARA Kazuhiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FUJIWARA Kazuhiro', 18)}}的其他基金

Elucidating the effects of fluctuations in sunlight spectral distribution on leaf photosynthesis through laboratory experiments
通过实验室实验阐明阳光光谱分布波动对叶片光合作用的影响
  • 批准号:
    18H03966
  • 财政年份:
    2018
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Non-Destructive Measurement of Target Protein Content in Leaves for Plant-Made Pharmaceutical Protein Production
用于植物药用蛋白生产的叶子中目标蛋白含量的无损测量
  • 批准号:
    24658217
  • 财政年份:
    2012
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Non-commutative class field theory and Shimura varieties
非交换类场论和 Shimura 簇
  • 批准号:
    21340004
  • 财政年份:
    2009
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Design and development of an LED-artificial sunlight source system capable of controlling spectral power distribution
一种可控制光谱功率分布的LED人工太阳光源系统的设计与开发
  • 批准号:
    18380147
  • 财政年份:
    2006
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of an optimal light environment control system for low light irradiation-low temperature storage of transplants
移植物弱光照射-低温保存最佳光环境控制系统的研制
  • 批准号:
    15380169
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Arithmetic study of Shimura varieties
志村品种的算术研究
  • 批准号:
    13440004
  • 财政年份:
    2001
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of water treatment methods and crop management methods for suppressing crop photoinhibition
开发抑制作物光抑制的水处理方法和作物管理方法
  • 批准号:
    11556046
  • 财政年份:
    1999
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Iwasawa theory for cyclotomic towers
岩泽圆塔理论
  • 批准号:
    10640018
  • 财政年份:
    1998
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Strategic construction and refinement of p-adic L-functions based on automorphic representation theory
基于自守表示理论的p进L函数的策略构建与细化
  • 批准号:
    22K03237
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory of endoscopy for an automorphic representation of a covering group
覆盖群自同构表示的内窥镜理论
  • 批准号:
    26610005
  • 财政年份:
    2014
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Research on automorphic representation
自守表示研究
  • 批准号:
    21340007
  • 财政年份:
    2009
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Multiple Dirichlet Series with Applications to Automorphic Representation Theory
多重狄利克雷级数及其在自守表示理论中的应用
  • 批准号:
    0702438
  • 财政年份:
    2007
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Theta correspondences and the automorphic representation theory of GSp(2)
Theta对应关系和GSp(2)的自同构表示理论
  • 批准号:
    183677-1996
  • 财政年份:
    1998
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Discovery Grants Program - Individual
Theta correspondences and the automorphic representation theory of GSp(2)
Theta对应关系和GSp(2)的自同构表示理论
  • 批准号:
    183677-1996
  • 财政年份:
    1997
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Discovery Grants Program - Individual
Theta correspondences and the automorphic representation theory of GSp(2)
Theta对应关系和GSp(2)的自同构表示理论
  • 批准号:
    183677-1996
  • 财政年份:
    1996
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了