Iwasawa theory for cyclotomic towers
岩泽圆塔理论
基本信息
- 批准号:10640018
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The notion of Taylor-Wiles system was born by analyzing a partial anwer to the Taniyama-Shimura conjecture on elliptic curves. This new axiomatic approach as well as Euler system is becoming a basic tool in Iwasawa theory. During this research period, Taylor-Wiles system approaches have been developed in the following directions :a) R=T theorems for Hida's nearly ordinary Hecke algebras,b) Study of cyclotomic towers of totally real fields,c) Construction of Taylor-Wiles systems for higher dimensional unitary Shimura varieties.In a), it is shown that nearly ordinary Hecke algebras defined by H.Hida (UCLA) corresponding to residually irreducible representations are identified with universal deformation rings in almost all cases.In b), I have formulated a non-abelian version of Iwasawa-Greenberg conjecture.To study this problem, a deformation theory over cyclotomic tower is developed. For special 2-dimensional representations, it is found that this new problem is equivalent to the classical Iwasawa-Greenberg conjecture by the technique of Taylor-Wlles systems. This result was announced at the international conference on automorphic forms at CEB (Paris, France) in April 2000.In c), Taylor-Wiles systems are constructed for the canonical integral structure of the cohomology groups. The result is announced at the international workshop "Algebraic Geometry 2000" (July 2000, Nagano, Japan), the third Asian Congress of Mathematicians (Oct. 2000, Manila, Philippine), and the international workshop "Automorphic forms and Shimura varieties" (March 2001, Baltimore, USA).Besides these oral communications, these results are distributed in a preprint form, and submitted to Journals.
Taylor-Wiles系统的概念是通过对椭圆曲线上的Taniyama-Shimura猜想的部分解答的分析而产生的。这种新的公理化方法和欧拉系统一样,正在成为岩泽理论的基本工具。在此期间,Taylor-Wiles系统方法在以下几个方面得到了发展:a)希达的近似普通Hecke代数的R=T定理,b)全真实的域的分圆塔的研究,c)高维酉Shimura簇的Taylor-Wiles系统的构造。在a)中,证明了由H.希达(UCLA)定义的近似普通Hecke代数对应于剩余不可约表示在几乎所有情况下都与泛变形环相同。在B)中,我提出了Iwasawa-Greenberg猜想的一个非交换版本。为了研究这个问题,发展了分圆塔上的变形理论。对于特殊的2维表示,利用Taylor-Wlles系统的技巧,发现这个新问题等价于经典的Iwasawa-Greenberg猜想.这一结果在2000年4月于法国巴黎举行的国际自守形式会议上公布。在c)中,对上同调群的典型整结构构造了Taylor-Wiles系统。这一结果在2000年国际代数几何研讨会上公布第三届亚洲数学家大会(2000年7月,日本长野)(2000年10月,菲律宾马尼拉),以及“自守形式和志村品种”国际讲习班(2001年3月,巴尔的摩,美国)。除了这些口头交流,这些结果以预印本的形式分发,并提交给期刊。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Mukai: "Theory of moduli 1,2"Iwanami shoten (in Japanese). 455 (1998)
S.Mukai:“模数 1,2 理论”岩波书店(日语)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Ochiai: "Bernstein degree of singular unitary highest weight representations of the metaplectic group (with K.Nishiyama)"Proc.Japan Acad.. 75. 9-11 (1999)
H.Ochiai:“超波群的奇异酉最高权重表示的 Bernstein 度(与 K.Nishiyama)”Proc.Japan Acad.. 75. 9-11 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Fujiwara: "A proof of flattening theorem in the formal case"Nagoya Journal of Math.. (印刷中).
K.Fujiwara:“正式案例中展平定理的证明”名古屋数学杂志(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Saito: "Inequality for conductor and differentials of a curve over a local field (with Q.Liu)"J.of Algebraic Geometry. 9. 409-424 (2000)
T.Saito:“导体不等式和局部场上曲线的微分(与 Q.Liu 合作)”J.of Algebraic Geometry。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUJIWARA Kazuhiro其他文献
FUJIWARA Kazuhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUJIWARA Kazuhiro', 18)}}的其他基金
Elucidating the effects of fluctuations in sunlight spectral distribution on leaf photosynthesis through laboratory experiments
通过实验室实验阐明阳光光谱分布波动对叶片光合作用的影响
- 批准号:
18H03966 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Non-Destructive Measurement of Target Protein Content in Leaves for Plant-Made Pharmaceutical Protein Production
用于植物药用蛋白生产的叶子中目标蛋白含量的无损测量
- 批准号:
24658217 - 财政年份:2012
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Non-commutative class field theory and Shimura varieties
非交换类场论和 Shimura 簇
- 批准号:
21340004 - 财政年份:2009
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Design and development of an LED-artificial sunlight source system capable of controlling spectral power distribution
一种可控制光谱功率分布的LED人工太阳光源系统的设计与开发
- 批准号:
18380147 - 财政年份:2006
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of an optimal light environment control system for low light irradiation-low temperature storage of transplants
移植物弱光照射-低温保存最佳光环境控制系统的研制
- 批准号:
15380169 - 财政年份:2003
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Arithmetic study of Shimura varieties
志村品种的算术研究
- 批准号:
13440004 - 财政年份:2001
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of water treatment methods and crop management methods for suppressing crop photoinhibition
开发抑制作物光抑制的水处理方法和作物管理方法
- 批准号:
11556046 - 财政年份:1999
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Automorphic and Galois representations
自守和伽罗瓦表示
- 批准号:
08640023 - 财政年份:1996
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Non-commutative class field theory and Shimura varieties
非交换类场论和 Shimura 簇
- 批准号:
21340004 - 财政年份:2009
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)