Global Bifurcational Approach to Complex Spatio^temporal Patterns in Dissipative Systems
耗散系统中复杂时空模式的全局分叉方法
基本信息
- 批准号:13440027
- 负责人:
- 金额:$ 9.6万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In a regime of far-from equilibrium there appears a diversity of complex patterns such as self-replication, spatio-temporal patterns, and collisions among particle-like patterns. One of the powerful tools to understand these things is dynamical system theory, however its naive application in general does not work partly due to the high dimensionality of phase space and large deformation of solutions. What should be the clue for us to start with in understanding such behaviors? We need to alter our way of thinking, namely "Let us think about the geometric structures that guide solution orbits creating such a chaotic dynamism, rather than keeping track of the deformations of solutions in detail". In other words, we should try to characterize geometric structures of the infinite dimensional phase space in which behaviors of solution orbits become easily detectable. Taking this viewpoint, we accomplished the following two main things. Please refer to the published papers for other aspect o … More f achievements.1.Unfolding of generalized heteroclinic cycle implies spatio-temporal chaos.Chimerical methods, such as AUTO, give us a great amount of information on an unstable solution, as well as on the behavior of its unstable manifold. Heteroclinic cycle connecting several stationary patterns was identified as a key to understand the complex behaviors like spatio-temporal chaos for the Gray-Scott model. The mechanism itself has much wider applicability to other model systems.2.Role of "Scattors" for collision process among particle-like patterns.Scattering of particle-like patterns in dissipative systems has much attention from various fields. We focused on the issue how the input-output relation is controlled at a head-on collision where traveling pulses or spots interact strongly.It had remained an open problem due to the large deformation of patterns at a colliding point. We found that special type of unstable steady or time-periodic solutions called scattors and their stable and unstable manifolds direct the traffic flow of orbits.Such scattors are in general highly unstable even in ID case which causes a variety of input-output relations through the scattering process. We illustrate the ubiquity of scattors by using the complex Ginzburg-Landau equation, the Gray-Scott model and a three-component reaction diffusion model arising in gas-discharge phenomena. Less
在远离平衡的状态下,出现了各种各样的复杂图案,如自我复制、时空图案,以及粒子样图案之间的碰撞。动力系统理论是理解这些问题的有力工具之一,然而,由于相空间的高维性和解的大变形,其幼稚的应用一般不起作用。我们理解这种行为的线索应该是什么?我们需要改变我们的思维方式,即“让我们思考引导解的轨道的几何结构,从而产生如此混乱的动力,而不是详细跟踪解的变形”。换句话说,我们应该尝试刻画无限维相空间的几何结构,在这种结构中,解的轨道行为变得容易检测到。本着这一观点,我们主要做了以下两件事。有关…的其他方面,请参阅已发表的论文更多的成果:1.广义异宿循环的展开蕴含着时空的混沌,化学方法,如AUTO,给我们提供了大量关于不稳定解及其不稳定流形行为的信息。将多个平稳模式连接起来的异宿环被认为是理解Gray-Scott模型中时空混沌等复杂行为的关键。这种机制本身对其他模型系统具有更广泛的适用性。2.散射体在类粒子图案间碰撞过程中的作用。耗散系统中类粒子图案的散布引起了各个领域的关注。我们重点研究了在行进脉冲或光斑强烈相互作用的迎头碰撞中如何控制输入输出关系的问题,但由于碰撞点处图案的大变形,这一直是一个悬而未决的问题。我们发现,特殊类型的不稳定稳定或时间周期解称为散射子,它们的稳定和不稳定流形指导着轨道的交通流,即使在ID情况下,这种散射子通常也是高度不稳定的,这导致了散射过程中的各种输入输出关系。我们用复数Ginzburg-Landau方程、Gray-Scott模型和气体放电现象中的三组分反应扩散模型说明了散射体的普遍存在。较少
项目成果
期刊论文数量(67)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yasumasa Nishiura, Takashi Teramoto, Kei-Ichi Ueda: "Dynamic transitions through scattors in dissipative systems"CHAOS. Vol.13,No.3. 962-972 (2003)
Yasumasa Nishiura、Takashi Teramoto、Kei-Ichi Ueda:“耗散系统中通过散射的动态转换”混沌。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
I. Tsuda: "Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems"Behavioral and Brain Sciences. 24(5). 575-628 (2001)
I. Tsuda:“根据混沌动力系统解释动态神经活动”行为与脑科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Nishiura, T.Teramoto, K.-I.Ueda: "Scattering and separators in dissipative systems"to appear.
Y.Nishiura、T.Teramoto、K.-I.Ueda:“耗散系统中的散射和分离器”出现。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Uesaka, R.Kobayashi: "Pattern Formation in the Crystallization of Ascorbic Acid"J.Cryst.Growth. Vol.237-239, Part 1. 237-239 (2002)
H.Uesaka、R.Kobayashi:“抗坏血酸结晶中的模式形成”J.Cryst.Growth。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
P.Erdi, I.Tsuda: "Hermeneutic approach to the brain : Process versus device"Theoria et Historia Scientiarum. VI(2). 307-321 (2002)
P.Erdi、I.Tsuda:“大脑的解释学方法:过程与设备”Theoria et Historia Scientiarum。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NISHIURA Yasumasa其他文献
NISHIURA Yasumasa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NISHIURA Yasumasa', 18)}}的其他基金
Wave-particle duality in dissipative systems
耗散系统中的波粒二象性
- 批准号:
24654018 - 财政年份:2012
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study on the strong interaction among spatially localized patterns in dissipative systems
耗散系统中空间局部模式之间的强相互作用研究
- 批准号:
21340019 - 财政年份:2009
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exploration for Complex Dynamics of Particle Patterns in Dissipative Systems
耗散系统中粒子模式复杂动力学的探索
- 批准号:
16204008 - 财政年份:2004
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
The experimental study for creating an artificial nerve conduit with Schwann cells
雪旺细胞人工神经导管的实验研究
- 批准号:
13671488 - 财政年份:2001
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding of Spatio-temporal patterns by Singular Limit Methods
通过奇异极限方法理解时空模式
- 批准号:
11214201 - 财政年份:1999
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (B)
相似国自然基金
偶偶核集体带DeltaI=4bifurcation现象和拉伸效应的机制
- 批准号:19875020
- 批准年份:1998
- 资助金额:7.5 万元
- 项目类别:面上项目
化学反应器设计中的分支(Bifurcation)问题
- 批准号:28670493
- 批准年份:1986
- 资助金额:2.5 万元
- 项目类别:面上项目
相似海外基金
Mechanism of grazing bifurcation and mass unification in two-mass collisional vibration systems
二质量碰撞振动系统中的掠分岔与质量统一机制
- 批准号:
23K13353 - 财政年份:2023
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Dynamic bifurcation of patterns through spatio-temporal heterogeneity
通过时空异质性动态分叉模式
- 批准号:
2307650 - 财政年份:2023
- 资助金额:
$ 9.6万 - 项目类别:
Standard Grant
Multiphysics of bifurcation phenomenon in nanostructures: Mechanical design of controlling brittle-ductile transition
纳米结构分岔现象的多物理场:控制脆塑转变的机械设计
- 批准号:
23H01295 - 财政年份:2023
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Patient-Specific Simulations to Guide Coronary Bifurcation Stenting
指导冠状动脉分叉支架置入的患者特异性模拟
- 批准号:
10810399 - 财政年份:2023
- 资助金额:
$ 9.6万 - 项目类别:
The clarification of reaction path bifurcation mechanisms affected by nuclear quantum effects
核量子效应影响的反应路径分岔机制的阐明
- 批准号:
23K04675 - 财政年份:2023
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of ultradiscrete dynamical systems for bifurcation phenomena in nonlinear nonequilibrium systems
非线性非平衡系统中分岔现象的超离散动力系统的构建
- 批准号:
22K03442 - 财政年份:2022
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bifurcation Theory and Abrupt Climate Change
分岔理论与气候突变
- 批准号:
RGPIN-2020-05009 - 财政年份:2022
- 资助金额:
$ 9.6万 - 项目类别:
Discovery Grants Program - Individual
Control of Carotid Artery Bifurcation Blood Flow
颈动脉分叉血流的控制
- 批准号:
575625-2022 - 财政年份:2022
- 资助金额:
$ 9.6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Data-Driven Approaches to Identify Biomarkers for Guiding Coronary Artery Bifurcation Lesion Interventions from Patient-Specific Hemodynamic Models
从患者特异性血流动力学模型中识别生物标志物的数据驱动方法,用于指导冠状动脉分叉病变干预
- 批准号:
10373696 - 财政年份:2022
- 资助金额:
$ 9.6万 - 项目类别:
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
- 批准号:
RGPIN-2020-06414 - 财政年份:2022
- 资助金额:
$ 9.6万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




